www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBernsteinpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Bernsteinpolynom
Bernsteinpolynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernsteinpolynom: Tipps
Status: (Frage) beantwortet Status 
Datum: 16:15 So 10.04.2011
Autor: SolRakt

Aufgabe
Zeigen Sie, dass mit n [mm] \in \IN [/mm] für das n-te Bernsteinpolynom der Funktion f(x) = [mm] x^{2} [/mm] auf [0,1] gilt:

[mm] p_{n}^{x^{2}}(x) [/mm] = [mm] x^{2} [/mm] + [mm] \bruch{1}{n}x(1-x) [/mm]

Hinweis: Formen Sie unter Benutzung von [mm] p_{n}^{x}(x) [/mm] = x
die Funktion [mm] p_{n}^{x^{2}}(x) [/mm] - [mm] \bruch{x}{n} [/mm]
in eine Summe um, und klammern Sie dort [mm] \bruch{n-1}{n}x^{2} [/mm] aus


Hallo.

Ich hoffe, dass mir hier jemand helfen kann.

Rein formal wäre doch der Ansatz:

[mm] p_{n}^{x^{2}}(x) [/mm] = [mm] \summe_{j=0}^{n}f(\bruch{j}{n})x^{j}(1-x)^{n-j} [/mm]

[mm] p_{n}^{x^{2}}(x) [/mm] = [mm] \summe_{j=0}^{n}\bruch{j^{2}}{n^{2}}x^{j}(1-x)^{n-j} [/mm]

Aber jetzt habe ich schon keine Ahnung mehr und auch der Hinweis hilft mir nicht wirklich weiter :(

Danke für Hilfe.

Gruß

        
Bezug
Bernsteinpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 So 10.04.2011
Autor: Fulla

Hallo SolRakt,


> Zeigen Sie, dass mit n [mm]\in \IN[/mm] für das n-te
> Bernsteinpolynom der Funktion f(x) = [mm]x^{2}[/mm] auf [0,1] gilt:
>  
> [mm]p_{n}^{x^{2}}(x)[/mm] = [mm]x^{2}[/mm] + [mm]\bruch{1}{n}x(1-x)[/mm]
>  
> Hinweis: Formen Sie unter Benutzung von [mm]p_{n}^{x}(x)[/mm] = x
>  die Funktion [mm]p_{n}^{x^{2}}(x)[/mm] - [mm]\bruch{x}{n}[/mm]
>   in eine Summe um, und klammern Sie dort
> [mm]\bruch{n-1}{n}x^{2}[/mm] aus
>  
> Hallo.
>  
> Ich hoffe, dass mir hier jemand helfen kann.
>  
> Rein formal wäre doch der Ansatz:
>  
> [mm]p_{n}^{x^{2}}(x)[/mm] = [mm]\summe_{j=0}^{n}f(\bruch{j}{n})\red{{n\choose j}}x^{j}(1-x)^{n-j}[/mm]
>  
> [mm]p_{n}^{x^{2}}(x)[/mm] = [mm]\summe_{j=0}^{n}\bruch{j^{2}}{n^{2}}\red{{n\choose j}}x^{j}(1-x)^{n-j}[/mm]
>  
> Aber jetzt habe ich schon keine Ahnung mehr und auch der
> Hinweis hilft mir nicht wirklich weiter :(

Nach dem Hinweis sollst du erstmal [mm]p_n^{x^2}(x)-\frac{x}{n}[/mm] als Summe darstellen. Mit [mm]p_n^x(x)=x[/mm] ergibt das
[mm]p_n^{x^2}(x)-\frac{x}{n}=p_n^{x^2}(x)-\frac{1}{n}p_n^x(x)=\sum_{i=0}^n\frac{i^2}{n^2}{n\choose i}x^i (1-x)^{n-i}-\frac{1}{n}\sum_{i=0}^n\frac{i}{n}{n\choose i}x^i(1-x)^{n-i}[/mm]
[mm]=\sum_{i=0}^n\frac{i^2-i}{n^2}{n\choose i}x^i(1-x)^{n-i}=\sum_{i=0}^n\frac{i(i-1)}{n^2}{n\choose i}x^i(1-x)^{n-i}[/mm]

So, jetzt bist du dran!
Du sollst jetzt [mm]\frac{n-1}{n}x^2[/mm] ausklammern: forme dazu [mm]\frac{i(i-1)}{n^2}{n\choose i}[/mm] um. Am Schluss musst du noch eine Indexverschiebung machen.

Lieben Gruß,
Fulla


Bezug
                
Bezug
Bernsteinpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 So 10.04.2011
Autor: SolRakt

Erstmal vielen Dank für die Hilfe.

Ich hab mal versucht, das umzuformen:

[mm] \bruch{i(i-1)}{n^{2}}\bruch{n!}{i!(n-i)!} [/mm]

= [mm] \bruch{1}{n^{2}}\bruch{n!}{(i-2)!(n-i)!} [/mm]

= [mm] \bruch{1}{n}\bruch{(n-1)!}{(i-2)!(n-i)!} [/mm]

= [mm] \bruch{n-1}{n}\bruch{(n-2)!}{(i-2)!(n-i)!} [/mm]

Stimmt das bis hierhin?

Bezug
                        
Bezug
Bernsteinpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 So 10.04.2011
Autor: MathePower

Hallo Solrakt,

> Erstmal vielen Dank für die Hilfe.
>  
> Ich hab mal versucht, das umzuformen:
>  
> [mm]\bruch{i(i-1)}{n^{2}}\bruch{n!}{i!(n-i)!}[/mm]
>  
> = [mm]\bruch{1}{n^{2}}\bruch{n!}{(i-2)!(n-i)!}[/mm]
>  
> = [mm]\bruch{1}{n}\bruch{(n-1)!}{(i-2)!(n-i)!}[/mm]
>  
> = [mm]\bruch{n-1}{n}\bruch{(n-2)!}{(i-2)!(n-i)!}[/mm]
>  
> Stimmt das bis hierhin?


Ja.


Gruss
MathePower

Bezug
                        
Bezug
Bernsteinpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:15 Mo 11.04.2011
Autor: Fulla

Hi,

jetzt mach daraus wieder einen Binomialkoeffizienten.

Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]