www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeschränktheit einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Beschränktheit einer Folge
Beschränktheit einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit einer Folge: Umformung
Status: (Frage) beantwortet Status 
Datum: 12:46 Do 12.08.2010
Autor: Konoid

Hallo Zusammen,

ich kann einen Schritt in einem Beweis nicht nachvollziehen:

Sei eine Folge f:= [mm] (a_n) [/mm] mit [mm] a_n:=\summe_{k=1}^{n}k^-^2 [/mm] . Zu zeigen ist, das diese Folge beschränkt ist, also es ein [mm] \left| a_n \right| \le [/mm] K gibt.

Jetzt gibt es den Ansatz [mm] n\ge [/mm] 2:

[mm] \left| a_n \right|=a_n= [/mm] 1+ [mm] \summe_{k=1}^{n}k^-^2 \le [/mm] 1 [mm] +\summe_{k=1}^{n}\bruch{1}{k(k-1)} [/mm] <- [mm] \underbar{den Schritt verstehe ich nicht}! [/mm]


Wenn ich $k^-^2$ Umforme  habe ich ($k^-^2$ = [mm] \bruch{1}{k^2}) [/mm] .

[mm] \bruch{1}{k^2 \bf-k}= \bruch{1}{k(k-1)} [/mm]

Ich verstehe nicht warum man nun [mm] \bf-k [/mm] und nicht [mm] \bf+k [/mm] nimmt?

Mit so etwas habe ich immernoch Probleme.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränktheit einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Do 12.08.2010
Autor: schachuzipus

Hallo Jens,



> Hallo Zusammen,
>  
> ich kann einen Schritt in einem Beweis nicht
> nachvollziehen:
>  
> Sei eine Folge f:= [mm](a_n)[/mm] mit [mm]a_n:=\summe_{k=1}^{n}k^-^2[/mm] .
> Zu zeigen ist, das diese Folge beschränkt ist, also es ein
> [mm]\left| a_n \right| \le[/mm] K gibt.
>  
> Jetzt gibt es den Ansatz [mm]n\ge[/mm] 2:
>  
> [mm]\left| a_n \right|=a_n=[/mm] 1+ [mm]\summe_{k=1}^{n}k^-^2 \le[/mm] 1  [mm]+\summe_{k=1}^{n}\bruch{1}{k(k-1)}[/mm] <- [mm]\underbar{den Schritt verstehe ich nicht}![/mm]

Stimmen denn da alle Indizes an der Summe?

Ist es nicht vllt. so, dass da

[mm] $|a_n|=a_n=\sum\limits_{k=1}^{n}k^{-2}=1+\sum\limits^{n}_{k=\red{2}}k^{-2}=1+\sum\limits^{n}_{k=\red{2}}\frac{1}{k^{2}}\le1+\sum\limits^{n}_{k=\red{2}}\frac{1}{k\cdot{}(k-1)}$ [/mm] steht? (für [mm] $n\ge [/mm] 2$)

>  
>
> Wenn ich [mm]k^-^2[/mm] Umforme  habe ich ([mm]k^-^2[/mm] = [mm]\bruch{1}{k^2})[/mm]
> .
>  
> [mm]\bruch{1}{k^2 \bf-k}= \bruch{1}{k(k-1)}[/mm]
>  
> Ich verstehe nicht warum man nun [mm]\bf-k[/mm] und nicht [mm]\bf+k[/mm]
> nimmt?

Nun, es ist doch [mm] $\blue{k^2} [/mm] \ [mm] =k\cdot{}k [/mm] \ [mm] \red{\ge} [/mm] \ [mm] \blue{k\cdot{}(k-1)}$ [/mm] für [mm] $k\ge [/mm] 2$

Damit [mm] $\blue{\frac{1}{k^2}} [/mm] \ [mm] \red{\le} [/mm] \ [mm] \blue{\frac{1}{k\cdot{}(k-1)}}$ [/mm]



>  
> Mit so etwas habe ich immernoch Probleme.
>  
> Vielen Dank!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß

schachuzipus

Bezug
        
Bezug
Beschränktheit einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Do 12.08.2010
Autor: fred97

Ergänzend zu schachuzipus:

Warum macht man diese Abschätzung ?

Darum:

     [mm] $|a_n| \le 1+\summe_{k=2}^{n}\bruch{1}{k(k-1)}= 1+\summe_{k=2}^{n}(\bruch{1}{k-1}-\bruch{1}{k})= [/mm] 1+1-1/n [mm] \le [/mm] 2$

(Teleskopsumme)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]