www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis zu einem Konvergenzsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Beweis zu einem Konvergenzsatz
Beweis zu einem Konvergenzsatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu einem Konvergenzsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Sa 11.05.2013
Autor: Kartoffelchen

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $(a_n)$ eine reelle Folge (mit n=1 bis n= unendlich).
Die Teilfolgen $(a_{2n}), (a_{2n-1}), (a_{3n}$ konvergieren.
Was lässt sich über die Konvergenz von $(a_n)$ aussagen?

Diese Frage wurde von mir in keinem anderen Forum gestellt!

Zur Aufgabe:

1.) Meine Vermutung: Die Folge $a_n$ ist konvergent.

2.) Der Beweis, bzw. meine Ansätze:

Da die 3 Teilfolgen konvergieren, existieren auch Grenzwerte. Sei nun:

$lim (a_{2n}) = a$
$lim (a_{2n-1}) = b$
$lim (a_{3n}) = c$

Da jede Teilfolge einer konvergenten Folge ebenfalls konvergiert, und dies sogar gegen den gleichen Grenzwert (diese Behauptung entnehme ich diesem Beitrag: https://matheraum.de/read?i=739203 ) gilt:

Jede Teilfolge von $a_{2n}$ konvergiert gegen $a$, z.B.: $a_{2*(3k)}$
Jede Teilfolge von $a_{3n}$ konvergiert gegen $c$, z.B.: $a_{3*(2k)}$

Daraus folgt: $a = c$

Jede Teilfolge von $a_{2n-1}$ konvergiert gegen $b$, z.B.: $a_{2*(3k+2)-1 = a_{6k+3}$
Jede Teilfolge von $a_{3n}$ konvergiert gegen $c$, z.B.: $a_{3*(2k+1) = a_{6k + 3}$

Daraus folgt: $b = c$

Daraus folgt: $a = b = c$

D.h. jede dieser Teilfolgen konvergiert gegen den gleichen Grenzwert. Damit konvergiert auch die Folge $a_n$ (aus dem Umkehrschluss der obigen Behauptung) <<<< (stimmt das wirklich?)

Vielen Dank für die Korrektur und/oder Hilfe!!

        
Bezug
Beweis zu einem Konvergenzsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Sa 11.05.2013
Autor: Marcel

Hallo,

> Sei [mm](a_n)[/mm] eine reelle Folge (mit n=1 bis n= unendlich).
>  Die Teilfolgen [mm](a_{2n}), (a_{2n-1}), (a_{3n}[/mm]
> konvergieren.
>  Was lässt sich über die Konvergenz von [mm](a_n)[/mm] aussagen?
>  Diese Frage wurde von mir in keinem anderen Forum
> gestellt!
>  
> Zur Aufgabe:
>  
> 1.) Meine Vermutung: Die Folge [mm]a_n[/mm]

Folgen schreibt man so: [mm] $(a_n)$ [/mm] oder so: [mm] $(a_n)_n$ [/mm] oder ...

> ist konvergent.

[ok]
  

> 2.) Der Beweis, bzw. meine Ansätze:
>  
> Da die 3 Teilfolgen konvergieren, existieren auch
> Grenzwerte. Sei nun:
>  
> [mm]lim (a_{2n}) = a[/mm]
>  [mm]lim (a_{2n-1}) = b[/mm]
>  [mm]lim (a_{3n}) = c[/mm]

Schreibe besser [mm] $\lim (a_{2n}) \red{\;=:\;} [/mm] a$ etc. pp.
  
Im Folgenden schreibst Du auch wieder Folgen nicht richtig, aber das
kannst Du selbst raussuchen und korrigieren. (Deine Schreibweise ist
zwar durchaus auch bei anderen Praxis, aber ich finde sie nicht besonders
gut, insbesondere didaktisch nicht gut!)

> Da jede Teilfolge einer konvergenten Folge ebenfalls
> konvergiert, und dies sogar gegen den gleichen Grenzwert
> (diese Behauptung entnehme ich diesem Beitrag:
> https://matheraum.de/read?i=739203 )

Diese einfache Behauptung kannst Du auch selbst relativ schnell
beweisen! (Verstehst Du Freds Beweis? Genauso hätte ich es auch
bewiesen!)

> gilt:
>  
> Jede Teilfolge von [mm]a_{2n}[/mm] konvergiert gegen [mm]a[/mm], z.B.:
> [mm]a_{2*(3k)}[/mm]
>  Jede Teilfolge von [mm]a_{3n}[/mm] konvergiert gegen [mm]c[/mm], z.B.:
> [mm]a_{3*(2k)}[/mm]
>  
> Daraus folgt: [mm]a = c[/mm]

[ok] (Warum denn eigentlich? Grenzwerte in (metrischen Räumen) sind...?)
  

> Jede Teilfolge von [mm]a_{2n-1}[/mm] konvergiert gegen [mm]b[/mm], z.B.:
> [mm]a_{2*(3k+2)-1 = a_{6k+3}[/mm]
>  Jede Teilfolge von [mm]a_{3n}[/mm]
> konvergiert gegen [mm]c[/mm], z.B.: [mm]a_{3*(2k+1) = a_{6k + 3}[/mm]
>  
> Daraus folgt: [mm]b = c[/mm]
>  
> Daraus folgt: [mm]a = b = c[/mm]

[ok]

> D.h. jede dieser Teilfolgen konvergiert gegen den gleichen
> Grenzwert. Damit konvergiert auch die Folge [mm]a_n[/mm] (aus dem
> Umkehrschluss der obigen Behauptung) <<<< (stimmt das
> wirklich?)

Ja, da sollte man aber etwas beachten (was hier aber insbesondere gegeben ist):
Sei [mm] $(a_{n})_n$ [/mm] eine Folge. Seien für $j=1,...,N$ die Folgen [mm] ${\big(a_{n^{(j)}_k}\big)}_k$ [/mm] Teilfolgen so, dass gilt:
Für $j=1,...,N$ gilt [mm] $a_{n^{(j)}_k} \to [/mm] r$ bei $k [mm] \to \infty$ [/mm] (d.h. alle diese Teilfolgen konvergieren gegen den
gleichen Grenzwert [mm] $r\,$) [/mm] und es gilt zudem:
[mm] $$\IN \setminus \bigcup_{j=1}^N \{{n^{(j)}_k:\;\;k \in \IN}\} \text{ ist endlich!}$$ [/mm]
(Die Aussage sieht komplizierter aus, als sie wirklich ist - versuche mal, sie
mit einfachen Worten zu beschreiben:
"Alle Teilfolgen haben den gleichen Grenzwert [mm] $r\,$ [/mm] und es gilt zudem: Wenn
ich die Indizes aller Teilfolgen vereinige, dann..."?!)

Dann folgt auch [mm] $a_n \to [/mm] r$  bei $n [mm] \to \infty\,.$ [/mm]

Das greift bei Dir schon, weil [mm] $\{2n:\;\; n \in \IN\} \cup \{2n-1:\;\; n \in \IN\}=\IN$ [/mm] gilt und die leere
Menge [mm] ($=\IN \setminus \IN$) [/mm] natürlich insbesondere endlich ist!

P.S. Natürlich kannst Du auch sagen:
Ich beweise einfach zuerst, dass [mm] $(a_n)_n$ [/mm] genau dann gegen [mm] $a\,$ [/mm] konvergiert, wenn
auch JEDE Teilfolge, und zwar auch, gegen [mm] $a\,$ [/mm] konvergiert. Damit kannst
Du auch gut arbeiten!
(Ich hab' Dir ja eh gesagt, dass Du einfach mal [mm] $\Longrightarrow$ [/mm] beweisen sollst
bei der zitierten Aussage. Und dann zeigst Du halt noch [mm] $\Longleftarrow$...) [/mm]

Insgesamt: [ok]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]