www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesDirekter Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Direkter Beweis
Direkter Beweis < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Direkter Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Do 26.10.2006
Autor: feku

Aufgabe
Beweisen Sie die folgende Formel direkt:
[mm] \summe_{k=1}^{n}\bruch{1}{k(k+1)}=\bruch{n}{n+1} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Mir ist es bereits gelungen, diese Formel durch vollständige Induktion zu beweisen. Nun soll man sie aber auch noch direkt beweisen. Mir fehlt hierzu jedoch völlig der Ansatz. Wie kann man eine solche Summenformel direkt beweisen? Als Hinweis ist noch gegeben, dass man mit Stammbrüchen arbeiten soll, aber was ist ein Stammbruch und wie kann man ihn hier anwenden?

        
Bezug
Direkter Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Do 26.10.2006
Autor: Karl_Pech

Hallo feku,


> Beweisen Sie die folgende Formel direkt:
>  [mm]\summe_{k=1}^{n}\bruch{1}{k(k+1)}=\bruch{n}{n+1}[/mm]


Du könntest ja mal schauen, wie Gottfried diese Aufgabe gelöst hat. :-)



Viele Grüße
Karl





Bezug
        
Bezug
Direkter Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Do 26.10.2006
Autor: Gonozal_IX

Hiho,

eigentlich schaffst du den direkten Beweis mit 2 Schritten:

1.) Partialbruchzerlegung
2.) Indexverschiebung
3.) Fertig :-)

Vllt. kommst ja nun alleine drauf, wenn nicht, nochmal nachfragen.

Gruß,
Gono.

Bezug
        
Bezug
Direkter Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 26.10.2006
Autor: feku

Aufgabe
Beschreiben sie das Verhalten der Summe und ordnen Sie ihr einen Wert zu.
[mm] \bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+... [/mm]

Vielen Dank für Euere Hinweise, habe den Beweis hinbekommen. Nun gibt es obige weitere Teilaufgabe.
Bin mir hier bei der Antwort nicht ganz sicher. Ich würde sagen, dass die Summe für n gegen unendlich gegen 1 strebt, sich langsam an 1 annähert. Ist diese Teilaufgabe mit dieser Aussage gelöst?

Bezug
                
Bezug
Direkter Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 26.10.2006
Autor: Gonozal_IX

Naja, du musst schon noch zeigen, wieso die sich an 1 annähert.

>  [mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...[/mm]

Wenn du dir die Summe nun mal anguckst, fällt dir bestimmt auf, daß sie genau die Form

[mm]\summe_{k=1}^{\infty}\bruch{1}{k(k+1)}[/mm]

Hast du eine Idee, wie du dann zeigen kannst, daß das gegen 1 geht?

Wenn ja, zeigs mal, wenn nicht, nochmal nachfragen ;-)

Gruß,
Gono.


Bezug
                        
Bezug
Direkter Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Do 26.10.2006
Autor: feku

Also oben war ja angegeben, dass die Summe der Formel [mm] \bruch{n}{n+1} [/mm] entspricht. Hier kann man ja sofort erkennen, dass wenn n gegen unendlich geht, der Bruch 1 wird. Aber wie man das anhand der Summenformel zeigt, da hab ich leider keine Idee.

Bezug
                                
Bezug
Direkter Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Do 26.10.2006
Autor: Gonozal_IX

Die Idee dahinter ist, die Summe als Grenzwert für eine endliche Summe zu betrachten:

[mm]\summe_{k=1}^{\infty}\bruch{1}{k(k+1)} = \limes_{n\rightarrow\infty}(\summe_{k=1}^{n}\bruch{1}{k(k+1)})=\limes_{n\rightarrow\infty}\bruch{n}{n+1} = 1 [/mm]

So würde es sauber aufgeschrieben aussehen.

Gruß,
Gono.

Bezug
                                        
Bezug
Direkter Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Do 26.10.2006
Autor: feku

Genau das hatte ich auch gemeint, nur nicht so sauber aufgeschrieben! Nochmals vielen Dank für die Hilfe!

Bezug
        
Bezug
Direkter Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Do 26.10.2006
Autor: Gonozal_IX

Doofer Antwortbutton -.-

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]