www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwert eines Spielfeldes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extremwert eines Spielfeldes
Extremwert eines Spielfeldes < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert eines Spielfeldes: Tipps und Lösungshilfen
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 29.08.2006
Autor: Dr.Prof.Niemand

Aufgabe
Eine 400-m-Laufbahn in einem Stadion besteht aus zwei parallelen Strecken und zwei angesetzten Halbkreisen. Für welchen Radius x der Halbkreise wird die rechteckige Spielfläche maximal?

Ich verstehe nicht wie die das mit dem maximal meinen, ist die Fläche nicht maximal wenn x=unentlich ist?
Brauche bitte hilfe bei dieser Aufgabe...

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt  http://www.infmath.de/thread.php?threadid=4678

        
Bezug
Extremwert eines Spielfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Di 29.08.2006
Autor: M.Rex


> Eine 400-m-Laufbahn in einem Stadion besteht aus zwei
> parallelen Strecken und zwei angesetzten Halbkreisen. Für
> welchen Radius x der Halbkreise wird die rechteckige
> Spielfläche maximal?
>  Ich verstehe nicht wie die das mit dem maximal meinen, ist
> die Fläche nicht maximal wenn x=unentlich ist?
>  Brauche bitte hilfe bei dieser Aufgabe...


Hallo

Klar, wenn x [mm] \to \infty, [/mm] wird die Fläche Maximal. Hier hast du aber ein Stadion zu bauen, dass eine 400m Laufbahn UND einen möglichst grossen Innenraum haben soll.
Sei nun x der Radius der Bahn, und y die Länge der geraden Strecke der Laufbahn.

Das Rechteck (der Innenraum) hat den Flächeninhalt A = 2x * y

Jetzt soll die Laufbahn 400m lang sein.

Der Umfang der beiden Halbkreise, die ja Teil der Laufbahn sind, ist [mm] \bruch{2 \pi x}{2}, [/mm] also [mm] \pi [/mm] x.

Also gilt:  
2 [mm] \pi [/mm] x + 2 y = 400. (Man läuft zwei mal die Gerade und zwei Halbkreise)
[mm] \gdw [/mm] y = [mm] \bruch{400 - 2 \pi x}{2} [/mm] = 200 - [mm] \pi [/mm] x.

Das ganze in die Flächenformel des Innenraumes
A = 2 x * y einsetzen ergibt:

A = 2 x (200 - [mm] \pi [/mm] x)

Hiervon suchst du jetzt das Maximum.

(entweder per Ableitung oder per Scheitelpunktsform das Ganze ist nämlich eine Parabel)

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]