www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikGedämpfte Schwingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Gedämpfte Schwingung
Gedämpfte Schwingung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mi 06.10.2010
Autor: Kuriger

Hallo

Die Funktion für gedämpfte Schwingung:
[mm] y=e^{\delta\cdot{}t}A\cdot{}cos(\omega_d\cdot{}t) [/mm]
Diese Funktion hat ja nur Gültigkeit bei einer geschwindigkeitsproportionalen Dämpfung.

Nun was ist, wenn die Dämpfung linear ist, also wenn beispielsweise die Reibung konstant ist?
Da müsste doch dieser Teil der Funktion linear sein: [mm] e^{\delta\cdot{}t}A [/mm] ? Aber ich weiss gerade nicht wie...

Gruss Kuriger

        
Bezug
Gedämpfte Schwingung: Unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mi 06.10.2010
Autor: Infinit

Hallo Kuriger,
so wie das ganze dasteht, ist es eine aufklingende Schwingung.
Viele Grüße,
Infinit



Bezug
        
Bezug
Gedämpfte Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 06.10.2010
Autor: leduart

Hallo
lernt ihr eigentlich nicht DGL zu lösen?
die DGl
[mm] x''+\omega_0^2*x+\mu*g [/mm]
hat die allgemeine Lösung:
[mm] y=Asin(\omega_0*t+\phi)-\mu*g/\omega_0^2 [/mm] setz ein, und du siehst, dass es stimmt.
Gruss leduart


Bezug
                
Bezug
Gedämpfte Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Mi 06.10.2010
Autor: chrisno

Ich habe mit der DGL ein Problem: gilt die nicht nur für eine Halbschwingung? Der Reibungsterm hat kein Vorzeichenwechsel, er kann so also auch bewirken, dass sich der Betrag der Geschwindigkeit vergrößert.
Das spiegelt sich dann auch in der Lösung wieder. Die Amplitude bleibt konstant. Das passt nicht zu der Reibung.

Bezug
                        
Bezug
Gedämpfte Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mi 06.10.2010
Autor: leduart

Hallo
Danke fuer dein Bedenken, ja zu dem Term kommt noch ein sign(v), d.h. die Reibung ist immer in Gegenrichtung zu v.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]