MatheRaum - Offene Informations- und Nachhilfegemeinschaft für Mathematik
URL: http://matheforum.net/forum/Grenzwert_zeigen/t153306?mrsessionid=947c76efecf4890bd4a95dcfc9f1adb7c8240d0b


Grenzwert zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:29 Mo 22.05.2006
Autor: Doreen

Aufgabe
Zeigen Sie, dass für alle  [mm] \alpha \in \IR [/mm] gilt:

[mm] \limes_{x\rightarrow\infty} \bruch{e^{x}}{x^{a}} [/mm] =  [mm] \infty [/mm]

dies bedeutet anschaulich, dass die Exponentialfkt. [mm] e^{x} [/mm] für x [mm] \to \infty [/mm] schneller wächst als jede Potenzfkt.

Hallo an alle,

ich bräuchte ein wenig Hilfestellung zu der obigen Aufgabe...

Mit der Anwendung von l'Hospital...

  [mm] \limes_{x\rightarrow\infty} \bruch{e^{x}}{ \alpha x^{a-1}} [/mm]

wenn ich mir da den Grenzwert anschaue, gehts  [mm] \infty [/mm] geteilt durch  [mm] \infty [/mm]
nochmal l'Hosptial... das selbe...

Wie kann man dass jetzt zeigen, dass es nach  [mm] \infty [/mm] geht...

Vielen Dank für Hilfe im Voraus
Gruß Doreen

Diese Frage habe ich in keinen anderem Forum gestellt
        
Grenzwert zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 22.05.2006
Autor: metzga

Hallo Doreen,

du musst die Regel von l'Hospital a-mal anwenden.
Dann kommst du auf, da der Grenzwert
[mm]\limes_{x\rightarrow\infty} \bruch{e^{x}}{ a!}[/mm]
existiert gilt:
[mm]\limes_{x\rightarrow\infty} \bruch{e^{x}}{ x^{a}}=\limes_{x\rightarrow\infty} \bruch{e^{x}}{ a!}= \infty[/mm]

MfG metzga
                
Grenzwert zeigen: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 22.05.2006
Autor: Roadrunner

Hallo metzga!


Eine kleine Korrektur / Anmerkung: da ja gelten soll $a \ [mm] \in [/mm] \ [mm] \red{\IR}$ [/mm] , muss man de l'Hospital solange anwenden bis für den Exponenten im Nenner gilt $< \ 1$ .


Gruß vom
Roadrunner

Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


© Copyright 2003-25 www.matheforum.net
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.