www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLeitkoeffizient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Leitkoeffizient
Leitkoeffizient < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leitkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Do 20.11.2008
Autor: kawu

Der Begriff des Polynoms wird schon in Wikipedia ( http://de.wikipedia.org/wiki/Polynom ) erklärt, jedoch verstehe ich folgendes nicht.

Als Leitkoeffizient wird bei dem Polynom [mm]A(X) = a_0 + a_1X + a_2X^2 ... a_{n-1}X^{n-1}[/mm] der höchste Koeffizient n bezeichnet.

Allerdings ist der höchste Koeffizient im Polynom n-1. Bisher dachte ich, dass der Leitkoeffizent von z.B. [mm]B(X) = a_0+a_1X+a_2X^2[/mm] die 2 wäre, wenn 2 = n-1 ist, dann ist n = 3, also ist auch der Leitkoeffizent von B 3. Ist das richtig?


lg, kawu


        
Bezug
Leitkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Do 20.11.2008
Autor: marsmaster


> Der Begriff des Polynoms wird schon in Wikipedia (
> http://de.wikipedia.org/wiki/Polynom ) erklärt, jedoch
> verstehe ich folgendes nicht.
>  
> Als Leitkoeffizient wird bei dem Polynom [mm]A(X) = a_0 + a_1X + a_2X^2 ... a_{n-1}X^{n-1}[/mm]
> der höchste Koeffizient n bezeichnet.
>  
> Allerdings ist der höchste Koeffizient im Polynom n-1.

genau, hier ist auch der Grad des Polynoms n-1

> Bisher dachte ich, dass der Leitkoeffizent von z.B. [mm]B(X) = a_0+a_1X+a_2X^2[/mm]
> die 2 wäre, wenn 2 = n-1 ist, dann ist n = 3, also ist auch
> der Leitkoeffizent von B 3. Ist das richtig?

nein, denn hier ist der grad deines Polynoms 2; also wäre [mm] a_{2} [/mm] dein Leitkoeffizient

die schreibweise mit dem n musst du als allgemeine Schreibweise verstehen.  d.h. vor jedem [mm] X^{k} [/mm]  steht ein [mm] a_{k} [/mm] ; mit k [mm] \in [/mm] {0, 1, ... , n-1}; und das Polynom hat den Grad n-1.

Der Leitkoeffizient ist einfach die Zahl die vor der höchsten Potenz von X steht.

bei f(x) = [mm] x^{2} [/mm] + 3x + 4 .... wäre  1 dein Leitkoeffizient.

Gruß
marsmaster

>  
>
> lg, kawu
>  


Bezug
                
Bezug
Leitkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Do 20.11.2008
Autor: kawu

Ah, jetzt habe ich es verstanden. Aber, auch wenn das eigentlich selbstklären ist, nur um sicher zu sein: [mm]A(X) = .... X^{n-1}[/mm], also der Leitkoeffizient = 1, ist das Polynom _normiert_ - korrekt?


lg, kawu


Bezug
                        
Bezug
Leitkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Do 20.11.2008
Autor: marsmaster

jap :)

Bezug
                        
Bezug
Leitkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Do 20.11.2008
Autor: kawu

Super, damit ist die Sache erledigt. Vielen Dank für die rasche Antwort =)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]