www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinearität und Teilmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Linearität und Teilmengen
Linearität und Teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität und Teilmengen: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 10:17 Do 26.01.2006
Autor: Supermax

Aufgabe
a) Finde für die gegebenen Mengen maximal linear unabhängige Teilmengen und ergänze sie zu einer Basis des jeweiligen Raumes. v1(1,2,3,4) v2(2,3,4,5) v3(3,4,5,6)
b) Finde dazu die Koordinaten einiger der folgenden Vektoren:
(1,1,1,1) (1,2,3,4) (4.3.2.1) (-5,0,0,5).

Wie kann ich das berechnen???

Danke für jegliche Hilfe!!!

P.S. ...auch ein Problem....wie schaffe ich es eine Gerade in Parameterform im 3-dimensionalen Raum in eine parameterfreie Form zu bekommen???



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Linearität und Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Do 26.01.2006
Autor: Bastiane

Hallo Supermax!

> a) Finde für die gegebenen Mengen maximal linear
> unabhängige Teilmengen und ergänze sie zu einer Basis des
> jeweiligen Raumes. v1(1,2,3,4) v2(2,3,4,5) v3(3,4,5,6)
>  b) Finde dazu die Koordinaten einiger der folgenden
> Vektoren:
>  (1,1,1,1) (1,2,3,4) (4.3.2.1) (-5,0,0,5).
>  Wie kann ich das berechnen???

Also, ich weiß nicht so ganz, welche Mengen jetzt wozu gehören sollen. Aber linear abhängig bedeutet doch, dass man einen Vektor als Linearkombination der anderen Vektoren darstellen kann. Und linear unabhängig ist dann, wenn eben dies nicht geht. Du musst halt, wenn du z. B. vier Vektoren gegeben hast, erstmal überprüfen, ob diese vier nicht vielleicht schon linear unabhängig sind. Dafür kannst du ein lineares Gleichungssystem lösen:
[mm] a*v_1+b*v_2+c*v_3+d*v_4=0 [/mm] - wenn du nur die Lösung a=b=c=d=0 erhältst, so sind die Vektoren linear unabhängig. Ansonsten sind sie linear abhängig.
Angenommen, deine vier Vektoren sind linear abhängig, so nimmst du dir eine beliebige drei-elementige Teilmenge dieser Vektoren und überprüfst das Gleiche. Wenn diese drei dann linear abhängig sind, bist du fertig, ansonsten probierst du es mit der nächsten drei-elementigen Teilmenge, und dann noch mit der nächsten und der letzten. Sind alle diese Möglichkeiten linear abhängig, so nimmst du nun alle zwei-elementigen Teilmengen. Findest du dann zwei Vektoren, die linear unabhängig sind, so bist du fertig, ansonsten ist halt nur ein einzelner Vektor linear unabhängig.
Du kannst auch, anstatt immer ein LGS zu lösen, die Determinante berechnen, wenn du die Vektoren als Spalten einer Matrix nimmst. Ist die Determinante =0, so sind die Vektoren linear abhängig, ansonsten linear unabhängig.
Naja, und zu einer Basis ergänzen geht dann so: du guckst dir quasi alle Komponenten an, und da, wo zwei einzelnen Komponenten voneinander anhängig sind, musst du noch eine linear unabhängige hinzufügen.

Was mit b) gemeint ist, weiß ich nicht so ganz, evtl. sollst du diese Vektoren als Linearkombination deiner Basisvektoren darstellen!? Angenommen, du hast die Basisvektoren [mm] b_1, b_2, b_3 [/mm] und [mm] b_4, [/mm] dann musst du für jeden Vektor [mm] v_i [/mm] folgendes Gleichungssystem lösen:
[mm] a*b_1+b*b_2+c*b_3+d*b_4=v_i [/mm]

> Danke für jegliche Hilfe!!!
>  
> P.S. ...auch ein Problem....wie schaffe ich es eine Gerade
> in Parameterform im 3-dimensionalen Raum in eine
> parameterfreie Form zu bekommen???

Das ist ja eine komplett andere Frage - dafür solltest du eigentlich auch einen eigenen Strang aufmachen! Hab' mich länger nicht mehr damit beschäftigt, aber ich glaube, das geht gar nicht, da es keine eindeutige (oder gar keine?) parameterfreie Darstellung einer Geraden im Dreidimensionalen gibt, oder vertue ich mich da jetzt? Jedenfalls ergäben ja bei einer Koordinatengleichung die Koeffizienten einen Normalenvektor der Geraden, und im 3D hat eine Gerade unendlich viele Normalenvektoren...

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Linearität und Teilmengen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:50 Do 26.01.2006
Autor: Supermax

Aufgabe
???

Also die Vektoren sind linear...

Wie meinst du das mit beliebiger 3-elementiger Teilmenge? Beispiel?

Da blick ich nicht ganz durch, wie ich das berechnen soll...

Bezug
                        
Bezug
Linearität und Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Do 26.01.2006
Autor: Bastiane

Hallo!

Eine Begrüßung deinerseits wäre auch nicht schlecht!!!

> ???
>  Also die Vektoren sind linear...

Wenn es keine Aufgabe gibt, dann gib doch bitte gar nichts in das obere Feld ein!!!
  

> Wie meinst du das mit beliebiger 3-elementiger Teilmenge?
> Beispiel?

Also, angenommen, du hast die vierelementige Menge [mm] \{1,2,3,4\}. [/mm] Dann hast du folgende dreielementige Teilmengen:

[mm] \{1,2,3\} [/mm]
[mm] \{1,2,4\} [/mm]
[mm] \{1,3,4\} [/mm]
[mm] \{2,3,4\} [/mm]

Und jetzt machst du das Gleiche mit deinen Vektoren!  

> Da blick ich nicht ganz durch, wie ich das berechnen
> soll...

Wenn's nur das war, was du nicht verstanden hast, dann dürfte das ja jetzt klappen. Ansonsten solltest du dir bitte mal ein bisschen was zu den Stichwörtern "Basis", "linear (un-)abhängig" u. Ä. angucken, dann verstehst du meine Erklärung auch!

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Linearität und Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 26.01.2006
Autor: Stefan

Hallo Max!

Wegen

[mm] $v_1 [/mm] = [mm] 2v_2 [/mm] - [mm] v_3$ [/mm]

sind die drei Vektoren linear abhängig. Schmeiße einen raus und ergänze die verbleibenden zwei (die dann in jedem Fall linear unabhängig sind) zu einer Basis des [mm] $\IR^4$. [/mm]

Liebe Grüße
Stefan

Bezug
        
Bezug
Linearität und Teilmengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 So 29.01.2006
Autor: matux

Hallo Supermax!


Leider konnte Dir keiner mit Deinem Problem vollständig in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]