www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMehrfachintegrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrfachintegrale
Mehrfachintegrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegrale: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 21.01.2010
Autor: DasDogma

Aufgabe
1) Berechnen Sie
[mm]\integral_{B}^{}{x_{1}^2 x_{2} dx}[/mm]
wobei B der Halbkreis [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\}[/mm] ist.

Hallo, habe diese Frage bisher noch nirgendwo gestellt.

Also wie ich der Aufgabenstellung entnehmen kann, befindet sich der Halbkreis im ersten und im vierten Quadranten. Dabei schneidet er die [mm]x_{2}[/mm]-Achse in 2 und -2. Weiterhin werde ich das ganze in Polarkoordinaten transformieren und damit weiterrechnen.
Daraus müsste sich dann meiner Auffassung nach folgendes Integral ergeben:
[mm]\integral_{B}^{}{r*r^2cos^2\varphi*rsin \varphi d(r,\varphi)} = \integral_{0}^{2}{\integral_{-\pi/2}^{\pi/2}{r*r^2cos^2\varphi*rsin \varphi d\varphi} dr}[/mm]

Also das wäre mein Lösungsansatz. Daher meine Frage, kann ich hier wie gehabt weiter machen oder ist hier ein Fehler versteckt.
Ich hoffe Ihr könnt mir helfen.

Gruß
DasDogma

        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Do 21.01.2010
Autor: fred97


> 1) Berechnen Sie
>  [mm]\integral_{B}^{}{x_{1}^2 x_{2} dx}[/mm]
>  wobei B der Halbkreis
> [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\}[/mm] ist.
>  Hallo, habe diese Frage bisher noch nirgendwo gestellt.
>  
> Also wie ich der Aufgabenstellung entnehmen kann, befindet
> sich der Halbkreis im ersten und im vierten Quadranten.
> Dabei schneidet er die [mm]x_{2}[/mm]-Achse in 2 und -2. Weiterhin
> werde ich das ganze in Polarkoordinaten transformieren und
> damit weiterrechnen.
>  Daraus müsste sich dann meiner Auffassung nach folgendes
> Integral ergeben:
>  [mm]\integral_{B}^{}{r*r^2cos^2\varphi*rsin \varphi d(r,\varphi)} = \integral_{0}^{2}{\integral_{-\pi/2}^{\pi/2}{r*r^2cos^2\varphi*rsin \varphi d\varphi} dr}[/mm]



Es ist doch B der Halbkreis $ [mm] K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\} [/mm] $, also ist [mm] x_1 \ge [/mm] 1. Damit sind Deine Grenzen falsch !

FRED


>  
> Also das wäre mein Lösungsansatz. Daher meine Frage, kann
> ich hier wie gehabt weiter machen oder ist hier ein Fehler
> versteckt.
>  Ich hoffe Ihr könnt mir helfen.
>  
> Gruß
>  DasDogma


Bezug
                
Bezug
Mehrfachintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 23.01.2010
Autor: DasDogma

Hallo, danke für die schnelle Antwort. Mir ist nun aber ein Fehler in der Aufgabenstellung aufgefallen und zwar lautet sie [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 0\} [/mm] also [mm] x_{1} \ge 0[/mm].

Stimmen für diesen Fall dann die Integrale?

Gruß,
DasDogma

Bezug
                        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 23.01.2010
Autor: MathePower

Hallo DasDogma,

> Hallo, danke für die schnelle Antwort. Mir ist nun aber
> ein Fehler in der Aufgabenstellung aufgefallen und zwar
> lautet sie [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 0\}[/mm]
> also [mm]x_{1} \ge 0[/mm].
>  
> Stimmen für diesen Fall dann die Integrale?


Ja.


>  
> Gruß,
>  DasDogma


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]