www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNachweis eines Ereignisfeldes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Nachweis eines Ereignisfeldes
Nachweis eines Ereignisfeldes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis eines Ereignisfeldes: Omega' < Omega is auch ein Ere
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 29.10.2010
Autor: wwfsdfsdf2

Aufgabe
Sei F ein Ereignisfeld in [mm] \Omega [/mm] und [mm] \Omega' \subset \Omega. [/mm]

Zeigen Sie, dass F' = [mm] \Omega' \cap [/mm] F = [mm] \{ \Omega' \cap A | A \in F \} [/mm]

ein Ereignisfeld ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Solange das Komplement in [mm] \Omega' [/mm] gebildet wird, ist es klar, dass F' ein Ereignisfeld ist - aber ich habe keine Ahnung, wie das Formal zu zeigen ist?!

danke

        
Bezug
Nachweis eines Ereignisfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 29.10.2010
Autor: Gonozal_IX

Huhu,

eins Vorweg: Anstatt "Ereignisfeld" benutz ich mal den gebräuchlicheren Begriff " [mm] $\sigma$-Algebra$". [/mm]


> Solange das Komplement in [mm]\Omega'[/mm] gebildet wird,

wird es

> ist es
> klar, dass F' ein Ereignisfeld ist - aber ich habe keine
> Ahnung, wie das Formal zu zeigen ist?!

Du musst halt zeigen, dass das Komplement von $A' = [mm] \Omega' \cap [/mm] A$ bezüglich [mm] \Omega' [/mm] wieder in [mm] \mathcal{F'} [/mm] liegt, d.h. sich als [mm] $\Omega' \cap [/mm] B$ darstellen lässt für ein $B [mm] \in \mathcal{F}$ [/mm]

Letztlich ist es einfach, wenn man benutzt, dass für zwei Mengen X und Y gilt: [mm] $X\setminus [/mm] Y = X [mm] \cap Y^c$. [/mm]

Nun bilde mal das Komplement von A' bzgl [mm] \Omega', [/mm] dann stehts eigentlich schon da.....

MFG,
Gono.

Bezug
                
Bezug
Nachweis eines Ereignisfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 29.10.2010
Autor: wwfsdfsdf2

Das Komplement von A' bzgl [mm] \Omega' [/mm] ist ja A'^c [mm] \cap \Omega', [/mm] damit ist es auch in [mm] \Omega' [/mm] enthalten. Aber wie rechtfertige ich den Schnitt mit [mm] \Omega', [/mm] also, dass ich das Komplement in [mm] \Omega' [/mm] bilde und nicht in [mm] \Omega [/mm] selbst ?!


[mm] (\Omega' \cap A)^c [/mm] wäre [mm] \Omega'^c \cup A^c. [/mm] Da [mm] \Omega'^c [/mm] = {} für das Komplement in [mm] \Omega', [/mm] ist also das Ergebnis [mm] A^c [/mm] - womit ich aber imo noch immer nicht bewiesen habe, dass es in [mm] \Omega' [/mm] liegt?!....

Bezug
                        
Bezug
Nachweis eines Ereignisfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Fr 29.10.2010
Autor: Gonozal_IX


> Aber wie
> rechtfertige ich den Schnitt mit [mm]\Omega',[/mm] also, dass ich
> das Komplement in [mm]\Omega'[/mm] bilde und nicht in [mm]\Omega[/mm] selbst
> ?!

Damit, dass die Aufgabe unsauber gestellt ist ;-)

z.z. ist nämlich, dass [mm] \mathcal{F'} [/mm] eine [mm] $\sigma$-Algebra [/mm] auf [mm] \Omega' [/mm] ist, d.h. es muss gelten:

$A [mm] \in \mathcal{F'} \Rightarrow \Omega'\setminus [/mm] A [mm] \in \mathcal{F'}$ [/mm]

[mm] \mathcal{F'} [/mm] ist im Allgemeinen auch gar keine [mm] $\sigma$-Algebra [/mm] auf [mm] \Omega, [/mm] sonsofern kannst du das gar nicht zeigen.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]