MatheRaum - Offene Informations- und Nachhilfegemeinschaft für Mathematik
URL: http://matheforum.net/forum/Probleme_mit_Faltung_in_W_keit/t388610?mrsessionid=6b0b608fc71d2c314a63cb452df4f32e3b6ea037


Probleme mit Faltung in W'keit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme mit Faltung in W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 So 06.04.2008
Autor: Braunstein

Hallo,
ich habe gerade ein Beispiel mit zwei unabhängigen diskreten Zufallsvariablen (X und Y) gerechnet. Ich habe die Wahrscheinlichkeitsfunktion des Zufallsvektors (X,Y) und die Wahrscheinlichkeitsfunktion Z=X+Y berechnet. Z sieht (allgemein) bei mir dann so aus:

[mm] X=i,i\in [/mm] (1,2,3)
[mm] Y=j,j\in [/mm] (0,2,4)

[mm] P(Y=0)=\bruch{1}{8}, P(Y=2)=\bruch{1}{2}, P(Y=4)=\bruch{3}{8} [/mm]
[mm] P(X=1)=\bruch{1}{4}, P(X=2)=\bruch{1}{4}, P(X=3)=\bruch{1}{2} [/mm]

Z=X+Y
[mm] P_{Z}(Z=k)=\summe_{i=0}^{k}P(X=i)*P(Y=k-i) [/mm]
[mm] P_{Z}(3 \le Z\le 5)=\summe_{i=3}^{5}P(X=i)*P(Y=5-i)=P(X=3)*P(Y=2)+P(X=4)*P(Y=1)+P(X=5)*P(Y=0)=\bruch{1}{2}*\bruch{1}{2}+0*0+0*\bruch{1}{8}=\bruch{1}{4} [/mm]

Nun muss ich noch den Erwartungswert von Z berechnen. Leider weiß ich da nicht mehr "genau" weiter. Was ich aber weiß, ist

[mm] G_{Z}(s)=G_{X}(s)*G_{Y}(s) [/mm]

Heißt das nun:

[mm] P_{Z}(Z=k)=\summe_{i=0}^{k}i*(k-i)*P(X=i)*P(Y=k-i) [/mm]

Ich weiß nicht, ob

i*(k-i)

nun die Erzeugendefunktion [mm] G_{Z}(s) [/mm] ist.
Ich hoffe, dass mir da jemand helfen kann.
Wenn dies so passt, wie muss ich dann die Indizes wählen?

Gruß, h.
        
Probleme mit Faltung in W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 08.04.2008
Autor: luis52

Hallo Hannes,


>

> Nun muss ich noch den Erwartungswert von Z berechnen.
> Leider weiß ich da nicht mehr "genau" weiter. Was ich aber
> weiß, ist
>

>

Offenbar kann Z die Werte aus [mm] $\mathcal{M}=\{0, 2, 4, 8, 6, 12\}$ [/mm] annehmen. Berechne
doch mit deiner Methode die Wahrscheinlichkeiten $P(Z=z)$ fuer [mm] $z\in\mathcal{M}$. [/mm]
Dann ist

[mm] $\operatorname{E}[Z]=\sum_{z\in\mathcal{M}}zP(Z=z)$. [/mm]


vg Luis


        
Probleme mit Faltung in W'keit: Korrektur
Status: (Antwort) fertig Status 
Datum: 23:40 Do 14.08.2008
Autor: kaleu74

Hallo,
da ich gerade selbst an mit einem Problem bzgl. stetiger Faltung zu kämpfen habe, bin ich auf diesen Artikel gestossen. Meiner Ansicht ist Deine Berechnung falsch.

Denn:

[mm]Z \in \{1,2,3,4,5,6,7\}=:I[/mm]

[mm]P(Z=k)=\sum_{x+y=k} P(X=x)P(Y=k-x)[/mm]

[mm]\Rightarrow P(3\le Z \le5)=P(X=1)P(Y=2)+P(X=3)P(Y=0)+P(X=2)P(Y=2)+P(X=1)P(Y=4)+P(X=3)P(Y=2)=19/32[/mm]

[mm]Erwartungswert: EZ=\sum_{k \in I} kP(Z=k)[/mm]

So, das müßte stimmen.
        
Probleme mit Faltung in W'keit: Tipp
Status: (Antwort) fertig Status 
Datum: 01:09 Sa 16.08.2008
Autor: generation...x

Naja - warum einfach, wenn's auch umständlich geht? [happy]

Du hast 2 unabhängige ZV und sollst den Erwartungswert der Summe berechnen. Der ist aber in diesem Fall genau gleich der Summe der Erwartungswerte. [mm]E(Y)=2,5 [/mm], [mm]E(X)=2,25 [/mm] also [mm]E(Z)=4,75 [/mm].
                
Probleme mit Faltung in W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 So 17.08.2008
Autor: kaleu74

Das ist richtig, man sollte nur die Unabhängigkeit und Linearität des EW ausnutzen, also: [mm]EZ=EX+EY[/mm]


Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


© Copyright 2003-25 www.matheforum.net
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.