www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe und obere Schranke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Reihe und obere Schranke
Reihe und obere Schranke < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe und obere Schranke: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:24 Sa 31.01.2009
Autor: Firecrow

Aufgabe
a) Beweisen Sie für n [mm] \ge [/mm] m [mm] \ge [/mm] 2
    [mm] \summe_{k=m}^{n} \bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{2(m^2 -m)} [/mm] - [mm] \bruch{1}{2(n^2 +n)} [/mm]

b) Beweisen Sie mit Hilfe von a)
    [mm] \summe_{k=2}^{ \infty } \bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{4} [/mm] und [mm] \summe_{k=1}^{ \infty } \bruch{1}{k^3} \le \bruch{5}{4} [/mm]

c) Können Sie aus a) bessere obere Schranken für [mm] \summe_{k=1}^{ \infty } \bruch{1}{k^3} [/mm] herleiten?

Irgendwie weiss ich nich so recht, wie ich diese Aufgabe angehen soll. Ich denk mal, wohl mit Fallunterscheidung??!!

Habt ihr vielleicht n Tipp für mich??

        
Bezug
Reihe und obere Schranke: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 15:28 Sa 31.01.2009
Autor: Loddar

Hallo Firecrow!


Beginnen wir mal mit der a.) ...

Entweder weist Du diese Gleichheit über eine vollständige Induktion nach. Ich würde hier aber eher eine MBPartialbruchzerlegung vornehmen:
[mm] $$\bruch{1}{k^3 -k} [/mm] \ = \ [mm] \bruch{1}{k*(k+1)*(k-1)} [/mm] \ = \ [mm] \bruch{A}{k-1}+\bruch{B}{k}+\bruch{C}{k+1}$$ [/mm]
Anschließend haben wir eine sogenannte "Telsekopsumme" vorliegen, wo sich fast alle Glieder eliminieren.


Gruß
Loddar


Bezug
                
Bezug
Reihe und obere Schranke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Sa 31.01.2009
Autor: Firecrow

Wenn ich mich nich verrechnet habe bekomm ich für die einzelnen Terme folgende Partialbruchzerlegungen raus.

[mm] \bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{2(k-1)} [/mm] - [mm] \bruch{1}{k-1} [/mm] + [mm] \bruch{1}{2(k+1)} [/mm]

[mm] \bruch{1}{2(m^2 -m)} [/mm] = [mm] \bruch{0}{2} [/mm] - [mm] \bruch{1}{2m} [/mm] + [mm] \bruch{1}{2(m-1)} [/mm]

[mm] \bruch{1}{2(n^2 + n)} [/mm] = [mm] \bruch{0}{2} [/mm] + [mm] \bruch{1}{2n} [/mm] - [mm] \bruch{1}{2(n+1)} [/mm]

Wie mach ich denn dann jetzt weiter???
Steh grad völlig aufm Schlauch.

Bezug
                        
Bezug
Reihe und obere Schranke: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 31.01.2009
Autor: schachuzipus

Hallo Firecrow,

> Wenn ich mich nich verrechnet habe bekomm ich für die
> einzelnen Terme folgende Partialbruchzerlegungen raus.
>  
> [mm] $\bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{2(k-1)} [/mm] - [mm] \bruch{1}{\red{k-1}} [/mm] +  [mm] \bruch{1}{2(k+1)}$ [/mm]

vertippt, der rote Nenner ist $k$

Das kannst du dann schreiben als

[mm] $\frac{1}{k^3-k}=\frac{1}{(k-1)\cdot{}k\cdot{}(k+1)}=\frac{1}{2}\cdot{}\left(\frac{1}{k-1}-\frac{2}{k}+\frac{1}{k+1}\right)$ [/mm]

Nun schreibe dir mal deine Summe etwas ausführlicher hin:

[mm] $\sum\limits_{k=m}^{n}\frac{1}{2}\cdot{}\left(\frac{1}{k-1}-\frac{2}{k}+\frac{1}{k+1}\right)=\frac{1}{2}\cdot{}\sum\limits_{k=m}^n\left(\frac{1}{k-1}-\frac{2}{k}+\frac{1}{k+1}\right)$ [/mm]

Ich habe keine gesteigerte Lust auf zuviel Tipparbeit ;-)

Schreibe dir also mal auf ein Blatt die ersten 5 Summanden, also die für $k=m, k=m+1, k=m+2, k=m+3, k=m+4$, dann viele ... und die letzten 5 Summanden, also für $k=n-4, k=n-3, k=n-2, k=n-1, k=n$ auf.

Du siehst, dass sich fast alles weghebt (Teleskopsumme)

Übrig bleibt [mm] $\frac{1}{2}\cdot{}\left(\frac{1}{m-1}-\frac{1}{m}+\frac{1}{n+1}-\frac{1}{n}\right)$ [/mm]

Das kannst du dann noch ein bissl umformen, bis du das Endergebnis hast ...



>  
> [mm]\bruch{1}{2(m^2 -m)}[/mm] = [mm]\bruch{0}{2}[/mm] - [mm]\bruch{1}{2m}[/mm] +
> [mm]\bruch{1}{2(m-1)}[/mm]
>  
> [mm]\bruch{1}{2(n^2 + n)}[/mm] = [mm]\bruch{0}{2}[/mm] + [mm]\bruch{1}{2n}[/mm] -
> [mm]\bruch{1}{2(n+1)}[/mm]
>  
> Wie mach ich denn dann jetzt weiter???
>  Steh grad völlig aufm Schlauch.


LG

schachuzipus

Bezug
        
Bezug
Reihe und obere Schranke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 So 01.02.2009
Autor: Firecrow

Aufgabe
b) Beweisen Sie mit Hilfe von a) [mm] \summe_{k=2}^{ \infty } \bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{4} [/mm] und [mm] \summe_{k=1}^{ \infty } \bruch{1}{k^3} \le \bruch{5}{4} [/mm]

Nachdem ich mit eurer Hilfe den Aufgabenteil a) gut lösen konnte häng ich jetzt bei Aufgabenteil b) fest.
[mm] \summe_{k=2}^{ \infty } \bruch{1}{k^3 -k} [/mm] = [mm] \bruch{1}{4} [/mm] den Teil hab ich schon fertig.
[mm] \summe_{k=1}^{ \infty } \bruch{1}{k^3} \le \bruch{5}{4} [/mm] arbeite ich hier auch wieder mit Partialbruchzerlegung?? Ich kann ja [mm] \bruch{1}{k^3} [/mm] darstellen als [mm] \bruch{1}{k(k*1)} [/mm] ??!!

Bezug
                
Bezug
Reihe und obere Schranke: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 So 01.02.2009
Autor: schachuzipus

Hallo nochmal,

> b) Beweisen Sie mit Hilfe von a) [mm]\summe_{k=2}^{ \infty } \bruch{1}{k^3 -k}[/mm]
> = [mm]\bruch{1}{4}[/mm] und [mm]\summe_{k=1}^{ \infty } \bruch{1}{k^3} \le \bruch{5}{4}[/mm]
>  
> Nachdem ich mit eurer Hilfe den Aufgabenteil a) gut lösen
> konnte häng ich jetzt bei Aufgabenteil b) fest.
> [mm]\summe_{k=2}^{ \infty } \bruch{1}{k^3 -k}[/mm] = [mm]\bruch{1}{4}[/mm]
> den Teil hab ich schon fertig.
>  [mm]\summe_{k=1}^{ \infty } \bruch{1}{k^3} \le \bruch{5}{4}[/mm]
> arbeite ich hier auch wieder mit Partialbruchzerlegung??
> Ich kann ja [mm]\bruch{1}{k^3}[/mm] darstellen als [mm]\bruch{1}{k(k*1)}[/mm]
> ??!!

Nö, benutze (a) !!

Es ist [mm] $\sum\limits_{k=1}^{\infty}\frac{1}{k^3}=\frac{1}{1^3}+\sum\limits_{k=2}^{\infty}\frac{1}{k^3}=1+\sum\limits_{k=2}^{\infty}\frac{1}{k^3}$ [/mm]

[mm] $\le 1+\sum\limits_{k=2}^{\infty}\frac{1}{k^3\red{-k}}$ [/mm]

denn durch das Verkleinern des Nenners vergrößert sich der Bruch

Nun einen kurzen Blick auf (a) werfen [lupe]

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]