www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSkalarprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 So 07.06.2009
Autor: diemelli1

Aufgabe
Untersuchen Sie, welche der folgenden Verknüpfungen Skalarprodukte
zwischen Vektoren u = (u1, u2, u3) und v = (v1, v2, v3) im Vektorraum ℝ3 sind.
Für die Skalarprodukte berechnen Sie die Norm von v = (1, 2, 3).
(a) <u, v> = [mm] u_{1} v_{1} [/mm] + [mm] u_{3} v_{3} [/mm]
(b) <u, v> = [mm] u_{1}^2 v_{1}^2 [/mm] + [mm] u_{2}^2 v_{2}^2 [/mm] + [mm] u_{3}^2 v_{3}^2 [/mm]
(c) <u, v> = [mm] u_{1} v_{1} [/mm] + [mm] 2u_{2} v_{2} [/mm] + [mm] 4u_{3} v_{3} [/mm]
(d) <u, v> = [mm] u_{1} v_{1} [/mm] - [mm] u_{2} v_{2} [/mm]
(d) <u, v> = [mm] u_{1} v_{2} [/mm] + [mm] u_{2} v_{3} [/mm] + [mm] u_{3} v_{1} [/mm]

Hallo....

wie gehe ich hier vor?

zu a) [mm] u_{1}*1 [/mm]  + [mm] u_{3}*3 [/mm]     ??

Ich hoffe mir kann Jemand helfen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 So 07.06.2009
Autor: XPatrickX

Hallo,

du musst hier zunächst die Eigenschaften des Skalarproduktes prüfen:

-Bilinearität
-Symmetrie
-pos. Definitheit


Gruß Patrick

Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mo 08.06.2009
Autor: diemelli1

Leider kann ich mit den Begriffen nicht viel anfangen und finde im Skript + Buch nichts dazu. Vielleicht kannst du mir an einem Beispiel erklären wie ich was mache.

Bezug
                        
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:34 Mo 08.06.2009
Autor: schachuzipus

Hallo diemelli1,

> Leider kann ich mit den Begriffen nicht viel anfangen und
> finde im Skript + Buch nichts dazu. Vielleicht kannst du
> mir an einem Beispiel erklären wie ich was mache.  

Nee nee, das läuft andersherum.

Sag du mal, wie ihr "Skalarprodukt" definiert habt.

Das muss ja in der VL dran gewesen sein, wieso solltet ihr sonst diese Aufgabe bekommen?

Also zeige mal eure Definition her und versuche, die dort auftauchenden Eigenschaften auf die in der Aufgabe gegebenen Verknüpfungen zu übertragen ...

Poste eigene Ansätze, dann sehen wir weiter

LG

schachuzipus


Bezug
                                
Bezug
Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:33 Mo 08.06.2009
Autor: diemelli1

<u,v> = <v,u>
<u+v,w> = <u,w> + <v,w>
<cu,v> = c<u,v>
<u,v> = <v,u>

also müsste bei a) stehen
  
<u,v> = u1*1 + u3*3    ------ aber heißt es nicht <u,v>=u1v1+u2v2+u3v3 ??

Bezug
                                        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:50 Mo 08.06.2009
Autor: schachuzipus

Hallo nochmal,

> <u,v> = <v,u> [ok]

Das ist die Symmetrie

>  <u+v,w> = <u,w> + <v,w>

Das ist ein Teil der Additivität, außerdem muss noch gelten [mm] $\langle u,v+w\rangle=\langle u,v\rangle+\langle u,w\rangle$ [/mm]

>  <cu,v> = c<u,v> [ok]

Das ist die Linearität, mit dem obigen ist das die Bilinearität

Fehlt noch die positive Definitheit, dh. [mm] $\langle u,u\rangle\ge [/mm] 0$ und [mm] $\langle u,u\rangle=0\gdw [/mm] u=0$

>  <u,v> = <v,u>

>  
> also müsste bei a) stehen
>    
> <u,v> = u1*1 + u3*3    ------ aber heißt es nicht
> <u,v>=u1v1+u2v2+u3v3 ??

Nicht ganz, mit [mm] $u=(u_1,u_2,u_3)$ [/mm] und [mm] $v=(v_1,v_2,v_3)$ [/mm] und der Def. von [mm] $\langle\bullet,\bullet\rangle$ [/mm] in a) ist doch

[mm] $\langle u,v\rangle=u_1v_1+u_3v_3$ [/mm]

Und das ist [mm] $=v_1u_1+v_3u_3$ [/mm] wegen der Kommutativität der Multiplikation in [mm] $\IR$ [/mm]

Und [mm] $v_1u_1+v_3u_3=\langle v,u\rangle$ [/mm]

Also ist [mm] $\langle u,v\rangle=\langle v,u\rangle$ [/mm] gezeigt, die verknüpfung in a) ist also schonmal symmetrisch

Nun gehe mal die anderen Punkte an ...

Wie sieht's mit der Additivität aus und der Linearität?

Das ist einfach nachzurechnen, setze nach Schema ein und forme um, analog wie bei der Symmetrie.

Dann überlege dir die Definitheit ...

Nun du wieder ;-)

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]