www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisStetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 17:31 So 16.01.2005
Autor: moebak

ich habe hier was interessantes aus dem Forum rauskopiert, was mich sehr interessiert. Allerdings hat der Verfasser (meiner Meinung) keine richtige Antwort darauf erhalten.
Es geht um:


Hallo!
Ich hab hier eine Aufgabe, bei der ich überhaupt keine Ahnung hab, wie ich sie lösen soll:

Für die Funktion f:  ->  gelte f(0)=1 und f(x+y)  f(x)f(y) für alle x,y  
Zeigen Sie:
Wenn f stetig an der Stelle 0 ist, dann ist f stetig auf ganz  [mm] \IR [/mm]

mfg
SBDevil


Die Antwort würde mich auch interessieren..

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 So 16.01.2005
Autor: Hanno

Hallo Malika!

Wir wollen die Funktion am Punkt [mm] $x_0\in \IR$ [/mm] auf ihre Stetigkeit prüfen. Sei dazu [mm] $\epsilon\in \IR^{+}$. [/mm] Dann gibt es auf Grund der Stetigkeit der Funktion an der Stelle 0 ein [mm] $\delta\in \IR$, [/mm] sodass für alle [mm] $x_1\in [-\delta,\delta]$ [/mm] die Ungleichung [mm] $|f(x_1)-1|<\frac{\epsilon}{|f(x_0)|}$ [/mm] erfüllt ist. Stellen wir diese Ungleichung um, so erhalten wir nach Anwenden von [mm] $f(x+y)=f(x)\cdot [/mm] f(y)$:
[mm] $|f(x_1)-1|\cdot |f(x_0)|<\epsilon$ [/mm]
[mm] $|f(x_0)\cdot f(x_1)-f(x_0)|<\epsilon$ [/mm]
[mm] $|f(x_0+x_1)-f(x_0)|<\epsilon$. [/mm]

Somit ist das Epsilon-Delta-Kriterium erfüllt und die Funktion in allen Punkten stetig.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]