www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastik< > und Normalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - < > und Normalverteilung
< > und Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

< > und Normalverteilung: Bin etwas verunsichert :-)
Status: (Frage) beantwortet Status 
Datum: 03:58 Fr 03.10.2008
Autor: KGB-Spion

Aufgabe
In einem Weingut werden Flaschen mit 0.75 Liter = 750 [mm] cm^3 [/mm] abgefüllt. Das Volumen X kann dabei als eine normalverteilte Zufallsvariable betrachtet werden. Der mittelwert sei 0.75l und die Standartabweichung sei 20 [mm] cm^3 [/mm] . Wie gross ist die Wahrscheinlichkeit dafür, dass die abgefüllte Flasche WENIGER als 730 [mm] cm^3 [/mm] Wein enthält ?  

Liebe User,

ich habe während meiner Wiederholungen diese Aufgabe aus dem Papula III S. 459 Aufg. 20 besorgt und muss nun feststellen, dass es da einige Probleme gibt :

Gesucht ist doch P(X<730) ==> ==> und die im Papula berechnen tatsächlich F(730) (natürlich mit der Transformation (X-E(X) / Sigma) .

Und jetzt kommts : Wieso ist denn das so, dass ich bei stetigen variablen von a nach b integrieren kann, auch wenn gilt a [mm] \le [/mm] x < b ? Und wieso haben die in unserer Aufgabe nicht  P(x<730) = 1 - P (X=730) gemacht ? (Es kommt zwar das selbe raus, geht jedoch hier ums Prinzip).

Falls es jemand von Euch weiss, wäre ich sehr dankbar, wenn man es mir erklären könnte, denn ich kann es nicht verstehen, wieso wir einfach so keinen Unterschied zwischen < und [mm] \le [/mm] machen.

Liebe Gruesse,

Denis (KGB-Spion)

        
Bezug
< > und Normalverteilung: Verteilungsfrage
Status: (Antwort) fertig Status 
Datum: 10:36 Fr 03.10.2008
Autor: Infinit

Hallo Denis,
Du hast prinzipiell recht, das Gleichheitszeichen gehört dazu und die Definition des Zusammenhangs zwischen der Wahrscheinlichkeit und der Verteilungsfunktion sieht so aus;

    $ P(a < x [mm] \leq [/mm] b) = F(b) - F(a) [mm] \, [/mm] , $

die obere Grenze beinhaltet den Wert b.
Bei einer stetigen Zufallsgröße ist dieser Unterschied nicht wichtig, er ändert nichts am Ergebnis. Bei einer diskreten allerdings schon, da hier die Verteilungsfunktion durch einen rechtsseitigen Grenzübergang definiert ist im Sinne von
$ [mm] \lim_{x \rightarrow x_0^+} [/mm] $ F(x)= $ [mm] F(x_0) [/mm] $  
Viele Grüße,
Infinit

Bezug
                
Bezug
< > und Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Fr 03.10.2008
Autor: KGB-Spion

Okay, dann werde ich im falle einer Normalverteilung immer so tun als ob es [mm] \le [/mm] heissen würde und nicht < ;-)


Vielen Dank , Du hast mir einen oder 2 Punkte mehr in der Klausur gerettet (und es könnten durchaus auch DIE Punkte sein, welche ich bräuchte).


Beste Gruesse,

Denis

Bezug
                        
Bezug
< > und Normalverteilung: Stetige Verteilungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Sa 04.10.2008
Autor: Infinit

Hallo Denis,
diese Vorgehensweise kannst Du bei allen stetigen Verteilungen mit gutem Gewissen anwenden. Aufpassen muss man nur, wenn diskrete Anteile eventuell vorhanden sind. Darum brauchst Du Dir eben wohl keine Sorgen zu machen, aus der E-Technik kenne ich einige Beispiele, wo man hier aufpassen muss. Aber wie gesagt, für Dich ist dies eben nicht so relevant.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]