www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumevektorräume Dimensionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - vektorräume Dimensionen
vektorräume Dimensionen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorräume Dimensionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Mo 22.11.2010
Autor: emulb

Aufgabe
Es seien V ein Vektorraum über [mm] \IR [/mm] und T =(a1,...an) [mm] \subset [/mm] V eine Basis von V. Wir definieren  an+1 := [mm] -\summe_{\nu=1}^{n} a\nu. [/mm]

Zeige: Jeder a [mm] \in [/mm] V besitz eine eindeutige Darstellung der Form

[mm] a=\summe_{\nu =1}^{n+1}\alpha \nu [/mm] a [mm] \nu [/mm] mit [mm] \alpha1,...,\alpha [/mm] n+1 [mm] \in \IR [/mm] und [mm] \summe_{\nu =1}^{n+1}\alpha \nu [/mm] = 0

laut prof soll ich nach der existens schauen. meint er damit, dass ich nachschauen soll ob T eine Basis von V ist? aber es steht ja schon dran. Muss ich es vielleicht beweisen?

hat es mit "unverkürbar" oder "unverlängerbar" zu tun?

        
Bezug
vektorräume Dimensionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 22.11.2010
Autor: Sax

Hi,

bezüglich der Basis T hat jeder Vektor a [mm] \in [/mm] V eine eindeutige Darstellung der Form  
a = [mm] \beta_1*a_1 [/mm] + [mm] \beta_2*a_2 [/mm] + ... + [mm] \beta_n*a_n [/mm] bzw. in Spaltenschreibweise
a = [mm] \vektor{\beta_1 \\ \beta_2 \\ ... \\ \beta_n} [/mm] = [mm] \beta_1*\vektor{1 \\ 0 \\ ... \\ 0} [/mm] + [mm] \beta_2*\vektor{0 \\ 1 \\ ... \\ 0} [/mm] + ... + [mm] \beta_n*\vektor{0 \\ 0 \\ ... \\ 1} [/mm]
Der Vektor [mm] a_{n+1} [/mm] hat die Darstellung  [mm] a_{n+1} [/mm] = [mm] \vektor{-1 \\ -1 \\ ... \\ -1} [/mm]
Außerdem soll die Gleichung  [mm] \alpha_1 [/mm] + [mm] \alpha_2 [/mm] + ... + [mm] \alpha_n [/mm] + [mm] \alpha_{n+1} [/mm] = 0 gelten, so dass in einem (n+1)-dimensionalen Vektorraum die Gleichung
[mm] \vektor{\beta_1 \\ \beta_2 \\ ... \\ \beta_n \\ 0} [/mm] = [mm] \alpha_1*\vektor{1 \\ 0 \\ ... \\ 0 \\ 1} [/mm] + [mm] \alpha_2*\vektor{0 \\ 1 \\ ... \\ 0 \\ 1} [/mm] + ... + [mm] \alpha_n*\vektor{0 \\ 0 \\ ... \\ 1 \\ 1} [/mm] +  [mm] \alpha_{n+1}*\vektor{-1 \\ -1 \\ ... \\ -1 \\ 1} [/mm]
zu lösen ist.
Die Existenz und Eindeutigkeit der Lösung ergibt sich, wenn du zeigst, dass die n+1 Vektoren auf der rechten Seite dieser Gleichung linear unabhängig sind.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]