www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis...eine Abzählung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - ...eine Abzählung
...eine Abzählung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

...eine Abzählung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:24 So 16.01.2005
Autor: IKE

hallo,

ich hänge gerade bei der folgenden Aufgabe ein wenig fest.
Sei [mm] (r_{n})_{n \in \IN} [/mm] eine Abzählung von [mm] \IQ [/mm] und f: [mm] \IR \to \IR [/mm] sei definiert durch f(x) [mm] =\begin{cases} \bruch{1}{n} , & \mbox{falls } x=r_n \mbox{ mit }n\in \IN \\ o, & \mbox{sonst } \end{cases} [/mm] Dann existiert  [mm] \limes_{x\rightarrow\xi} [/mm] f(x) in allen Punkten [mm] \xi \in \IR. [/mm]


Dazu habe ich mir überlegt den Beweis indirekt zu führen und anzunehmen, das kein Grenzwert existiert. Also gibt es kein [mm] x_{0} [/mm] in [mm] \IQ, [/mm] dann ist [mm] f(x_{0})<0. [/mm] Und es würde dann auch für [mm] \xi_{n} [/mm] gelten, dass | [mm] \xi_{n}-x_{0}| [/mm] > [mm] \bruch{1}{n} [/mm] ist. Damit würde dann ja auch f( [mm] \xi_{n}) \not= [/mm] 0 sein und es würde kein Grenzwert existieren.

Ist die richtung einigermaßen richtig, oder wäre es einfacher den Beweis direkt zu führen?
Für ein paar Tipps wäre ich sehr dankbar.

Grüße IKE

        
Bezug
...eine Abzählung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 16.01.2005
Autor: SEcki

Hallo,

> Dazu habe ich mir überlegt den Beweis indirekt zu führen
> und anzunehmen, das kein Grenzwert existiert. Also gibt es
> kein [mm]x_{0}[/mm] in [mm]\IQ,[/mm] dann ist [mm]f(x_{0})<0.[/mm]

Wie meinst du das? Dann ist die Funktion doch 0.

Und es würde dann

> auch für [mm]\xi_{n}[/mm] gelten, dass | [mm]\xi_{n}-x_{0}|[/mm] >
> [mm]\bruch{1}{n}[/mm] ist. Damit würde dann ja auch f( [mm]\xi_{n}) \not=[/mm]
> 0 sein und es würde kein Grenzwert existieren.

Ich verstehe nicht, was du hier machen willst. Nur weil der Funktionswert in einem Punkt anders ist, kann doch trotzdem der Limes existieren - und anders sein. Nehme zb [mm]x \to x[/mm]  und ändere den Wert an der Stelle 0 auf 10  -trotzdem existiert der Grenzwert.

> Ist die richtung einigermaßen richtig, oder wäre es
> einfacher den Beweis direkt zu führen?

Also, direkt ist wirkoich einfacher - überlege dir dazu doch einfach mal: für ein fixiertes n, wie oft kann die Funktion Werte [mm]\ge \bruch{1}{n}[/mm] annehmen? Nach unten ist sie ja durch 0 beschränkt.

SEcki

Bezug
                
Bezug
...eine Abzählung: Idee
Status: (Frage) beantwortet Status 
Datum: 20:44 So 16.01.2005
Autor: IKE

hallo,

also wenn ich mir das so recht überlege, kann ja die Funktion nur n-mal Werte [mm] \ge [/mm] 0 annehmen. Aus diesem Grund ist die Funktion ja auch nach oben beschränkt, weil es nie mehr als n Werte sein können, oder she ich das falsch? Hast du vielleicht noch einen Tipp wie ich weiter vorgehen könnte??

Gruß IKE

Bezug
                        
Bezug
...eine Abzählung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 So 16.01.2005
Autor: SEcki

Hallo,

> also wenn ich mir das so recht überlege, kann ja die
> Funktion nur n-mal Werte [mm]\ge[/mm] 0 annehmen.

Das müsste hier[mm]\ge \frac{1}{n}[/mm] heissen - habe ich mich in einem Posting auch vertippt, werde das gleich editieren.

> Aus diesem Grund
> ist die Funktion ja auch nach oben beschränkt, weil es nie
> mehr als n Werte sein können, oder she ich das falsch? Hast
> du vielleicht noch einen Tipp wie ich weiter vorgehen
> könnte??

Also, es gibt maximal n-Werte [mm]\ge \frac{1}{n}[/mm].  Als erstes solltest du dir jetzt mal überlegen, was wohl jeweils der Limes der Funktion an einer Stelle [mm]x_0[/mm] sein wird. Jetzt kommt es ein bisschen drauf an, wie ihr den Limes an einer Stelle defineirt hat - probier mal mit der Definition, und der Tatsache, dass für ejdes n es nur endliche viele Stellen gibt, die größer gleich [mm]\bruch{1}{n}[/mm] sind, weiterzuarbeiten.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]