www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysis1. und 2. Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - 1. und 2. Ableitung
1. und 2. Ableitung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. und 2. Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:31 Di 15.06.2004
Autor: Der_Ahnungslose

Hallo!!!
Könnte mir jemand mal auf die Schnelle die 1. und 2. Ableitung folgender Funktion bilden?? Möchte nur mal überprüfen, ob meine Lösung richtig ist und ob ich das System kapiert habe ;-).


4$ [mm] x_{2} [/mm] $*ln(3x+2)

Vielen Dank für Eure Hilfe!!!
Gruß,
Kai


        
Bezug
1. und 2. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 15.06.2004
Autor: Oliver

Hallo Kai,

>  Könnte mir jemand mal auf die Schnelle die 1. und 2.
> Ableitung folgender Funktion bilden?? Möchte nur mal
> überprüfen, ob meine Lösung richtig ist und ob ich das
> System kapiert habe ;-).
>  
>
> 4[mm] x_{2} [/mm]*ln(3x+2)

lass' es uns doch umgekehrt machen: Du stellst Deine Lösung hier rein und wir schauen dann gerne drüber, ob sie richtig ist ...

Mach's gut
Oliver

Bezug
                
Bezug
1. und 2. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Di 15.06.2004
Autor: Der_Ahnungslose


Können wir auch machen. Also:

f'(x)= 8x*ln(3x+2)+12x
f''(x)=8*ln(3x+2)+36

Richtig??

Bezug
                        
Bezug
1. und 2. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 15.06.2004
Autor: Marc

Hallo Der_Ahnungslose,

> f'(x)= 8x*ln(3x+2)+12x
>  f''(x)=8*ln(3x+2)+36
>  
> Richtig??

Schaun wir mal:

[mm] $f(x)=4*x^2*\ln(3x+2)$ [/mm]

Produktregel:
[mm] $f'(x)=8x*\ln(3x+2)+4x^2*\bruch{1}{3x+2}*3$ [/mm]

Das sieht ja dann nicht so gut aus für dich...

Du scheinst die Ableitung von [mm] $\ln(3x+2)$ [/mm] falsch berechnet zu haben. Diese ist ja nach der Kettenregel
$f(x)=g(\ h(x)\ )$ [mm] $\Rightarrow$ [/mm] $f'(x)=h'(x)*g'(\ [mm] \red{h(x)}\ [/mm] )$

Hier: [mm] $(\ln(3x+2))'=3*\bruch{1}{\red{3x+2}}$ [/mm]
In die äußere Ableitung ist also die innere Funktion einzusetzen.

Die zweite Ableitung ist dann auch fragwürdig :-)

Probier' diese doch noch mal zu berechnen, oder frag' bei Unklarheiten nach.

Viele Grüße,
Marc




  

Bezug
        
Bezug
1. und 2. Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Di 15.06.2004
Autor: Marc

Hallo Der_Ahnungslose,

willkommen im MatheRaum! :-)

>  Könnte mir jemand mal auf die Schnelle die 1. und 2.
> Ableitung folgender Funktion bilden?? Möchte nur mal
> überprüfen, ob meine Lösung richtig ist und ob ich das
> System kapiert habe ;-).
>  
>
> 4[mm] x_{2} [/mm]*ln(3x+2)

Meinst du [mm] $4*x^{\red{2}}*\ln(3x+2)$? [/mm]

Wie bereits gesagt, poste doch mal deine Lösung!

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]