www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeit1/x Epsilon-Delta-Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - 1/x Epsilon-Delta-Kriterium
1/x Epsilon-Delta-Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1/x Epsilon-Delta-Kriterium: Verständnis, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:44 Mo 01.08.2011
Autor: paulpanter

Aufgabe
Beweisen Sie, dass

f: R\ {0} -> R, x -> 1/x

auf dem gesamten Definitionsbereich stetig ist mit dem Epsilon-Delta-Kriterium.

Hi,

ich habe eine Verständnisfrage zu einem Beweis, den ich lustigerweise auch hier gefunden habe :=).

Abschätzung:

[mm] |f(x)-f(x_0)| [/mm] = [mm] |\bruch{1}{x}-\bruch{1}{x_0}| [/mm] = [mm] |\bruch{x-x_0}{x*x_0}| [/mm] = [mm] \bruch{|x-x_0|}{|x*x_0|} [/mm] <= [mm] \bruch{\delta}{|x*x_0|} [/mm] <= [mm] \bruch{\delta}{(|x_0|-\delta)*|x_0|} [/mm] < [mm] \epsilon [/mm]


Die letzte Abschätzung gilt nur, wenn:

[mm] \delta [/mm] < [mm] |x_0|, [/mm] denn:

|x| = [mm] |x_0+x-x_0| [/mm] = [mm] |x_0-x_0+x| [/mm] = [mm] |x_0-(x_0-x)| [/mm] >= | [mm] |x_0| [/mm] - [mm] |x_0-x| [/mm] |, wenn jetzt [mm] |x-x_0| [/mm] < [mm] |x_0|, [/mm] dann gilt:
= [mm] |x_0| [/mm] - [mm] |x_0-x| [/mm] >= [mm] |x_0| [/mm] - [mm] \delta [/mm]

Nun kann ich also:

[mm] \bruch{\delta}{(|x_0|-\delta)*|x_0|} [/mm] < [mm] \epsilon [/mm] nach [mm] \delta [/mm] auflösen. Wobei dieser Term nur gültig ist, wenn eben [mm] \delta [/mm] < [mm] |x_0| [/mm]


Wähle also: [mm] \delta [/mm] := min( [mm] \bruch{\epsilon*x_0^2}{1+\epsilon*|x_0|}, |x_0| [/mm] )



Frage 1: Das Delta ist jetzt also automatisch auf [mm] \delta [/mm] < [mm] |x_0| [/mm] beschränkt; wenn der 1. Term für [mm] \delta [/mm] gewählt wird. Wenn jedoch [mm] \delta [/mm] := [mm] |x_0| [/mm] gewählt wird, galt [mm] \delta [/mm] < [mm] |x_0| [/mm] nicht bzw. 1. Term > [mm] |x_0| [/mm] ? Muss ich für die Wahl [mm] \delta [/mm] := [mm] |x_0| [/mm] nicht noch zeigen, dass diese Wahl auch "funktioniert"?

Frage 2: Darf ich beim Epsilon-Delta-Kriterium auch Forderungen an x stellen? z.B. x < 1, damit irgendeine Abschätzung stimmt?

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
1/x Epsilon-Delta-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 01.08.2011
Autor: fred97


> Beweisen Sie, dass
>  
> f: R\ {0} -> R, x -> 1/x
>  
> auf dem gesamten Definitionsbereich stetig ist mit dem
> Epsilon-Delta-Kriterium.
>  Hi,
>  
> ich habe eine Verständnisfrage zu einem Beweis, den ich
> lustigerweise auch hier gefunden habe :=).
>  
> Abschätzung:
>  
> [mm]|f(x)-f(x_0)|[/mm] = [mm]|\bruch{1}{x}-\bruch{1}{x_0}|[/mm] =
> [mm]|\bruch{x-x_0}{x*x_0}|[/mm] = [mm]\bruch{|x-x_0|}{|x*x_0|}[/mm] <=
> [mm]\bruch{\delta}{|x*x_0|}[/mm] <=
> [mm]\bruch{\delta}{(|x_0|-\delta)*|x_0|}[/mm] < [mm]\epsilon[/mm]
>  
>
> Die letzte Abschätzung gilt nur, wenn:
>  
> [mm]\delta[/mm] < [mm]|x_0|,[/mm] denn:
>  
> |x| = [mm]|x_0+x-x_0|[/mm] = [mm]|x_0-x_0+x|[/mm] = [mm]|x_0-(x_0-x)|[/mm] >= | [mm]|x_0|[/mm]
> - [mm]|x_0-x|[/mm] |, wenn jetzt [mm]|x-x_0|[/mm] < [mm]|x_0|,[/mm] dann gilt:
>  = [mm]|x_0|[/mm] - [mm]|x_0-x|[/mm] >= [mm]|x_0|[/mm] - [mm]\delta[/mm]
>  
> Nun kann ich also:
>  
> [mm]\bruch{\delta}{(|x_0|-\delta)*|x_0|}[/mm] < [mm]\epsilon[/mm] nach [mm]\delta[/mm]
> auflösen. Wobei dieser Term nur gültig ist, wenn eben
> [mm]\delta[/mm] < [mm]|x_0|[/mm]
>  
>
> Wähle also: [mm]\delta[/mm] := min(
> [mm]\bruch{\epsilon*x_0^2}{1+\epsilon*|x_0|}, |x_0|[/mm] )
>  
>
>
> Frage 1: Das Delta ist jetzt also automatisch auf [mm]\delta[/mm] <
> [mm]|x_0|[/mm] beschränkt; wenn der 1. Term für [mm]\delta[/mm] gewählt
> wird. Wenn jedoch [mm]\delta[/mm] := [mm]|x_0|[/mm] gewählt wird, galt
> [mm]\delta[/mm] < [mm]|x_0|[/mm] nicht bzw. 1. Term > [mm]|x_0|[/mm] ? Muss ich für
> die Wahl [mm]\delta[/mm] := [mm]|x_0|[/mm] nicht noch zeigen, dass diese Wahl
> auch "funktioniert"?

Ich bin mit obiger Def. von [mm] \delta [/mm] auch nicht einverstanden. Alles wird gut für


      [mm]\delta[/mm] := min( [mm]\bruch{\epsilon*x_0^2}{1+\epsilon*|x_0|}, |x_0|/2[/mm] )

>  
> Frage 2: Darf ich beim Epsilon-Delta-Kriterium auch
> Forderungen an x stellen? z.B. x < 1, damit irgendeine
> Abschätzung stimmt?

Nein.

FRED

>  
> Vielen Dank!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]