www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysis1x1 Matrix partiell stetig?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - 1x1 Matrix partiell stetig?
1x1 Matrix partiell stetig? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1x1 Matrix partiell stetig?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:03 Di 12.05.2009
Autor: Newbie89

Aufgabe
Ist diese Matrix partiell stetig diffbar?

Guten Tag Leute,

ich habe eine Aufgabe bekommen, die im folgenden so aussieht:

[mm] f(\vec{x},\vec{y}) [/mm] = [mm] \vec{x}^{T} [/mm] A [mm] \vec{y} [/mm]

Wobei A eine reelle n [mm] \times [/mm] m - Matrix ist.

Meine Feststellung ist, dass egal, was für n- bzw. m-Werte eingesetzt werden, es kommt immer eine 1 [mm] \times [/mm] 1 Matrix heraus.

Aber was hat es für eine Bedeutung hinsichtlich der Stetigkeit, Differenzierbarkeit und partielle Diffbarkeit?

Gruß Fabian

        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 12.05.2009
Autor: leduart

Hallo
ne [mm] 1\times1 [/mm] Matrix ist doch ne Zahl, meinst du das.
kannst du die Aufgabe genauer schreiben?
Gruss leduart

Bezug
                
Bezug
1x1 Matrix partiell stetig?: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:22 Di 12.05.2009
Autor: Newbie89

Die Aufgabenstellung lautet:

Sei A eine reelle n [mm] \times [/mm] m-Matrix, also A [mm] \in \IR^{n \times m} [/mm] . Betrachten Sie die Abbildung f: [mm] \IR^{n} \to \IR^{m}, [/mm] die durch

[mm] f(\vec{x},\vec{y}) [/mm] = [mm] \vec{x}^{T} [/mm] A [mm] \vec{y} [/mm] definiert wird.

Untersuchen Sie f auf Stetigkeit, (totale) Differenzierbarkeit und partielle Differenzierbarkeit. Ist f stetig partiell differenzierbar?


Bezug
                        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 12.05.2009
Autor: Marcel

Hallo,

> Die Aufgabenstellung lautet:
>  
> Sei A eine reelle n [mm]\times[/mm] m-Matrix, also A [mm]\in \IR^{n \times m}[/mm]
> . Betrachten Sie die Abbildung f: [mm]\IR^{n} \to \IR^{m},[/mm] die
> durch
>
> [mm]f(\vec{x},\vec{y})[/mm] = [mm]\vec{x}^{T}[/mm] A [mm]\vec{y}[/mm] definiert wird.
>  
> Untersuchen Sie f auf Stetigkeit, (totale)
> Differenzierbarkeit und partielle Differenzierbarkeit. Ist
> f stetig partiell differenzierbar?

  
da stimmt immer noch etwas nicht. Denn mit
[mm] $$f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}$$ [/mm]
sollte [mm] $\vec{x} \in \IR^{n}$ [/mm] und [mm] $\vec{y} \in \IR^m$ [/mm] sein, also wäre [mm] $f\,$ [/mm] eine Abbildung [mm] $$\IR^n \times \IR^m \to \IR\,.$$ [/mm]

Dann könnte natürlich auch $f: [mm] \IR^{n+m} \to \IR$ [/mm] auffassen und sich dann mit der Differenzierbarkeit beschäftigen. Oder geht es um Differenzierbarkeit bzg. [mm] $\vec{x}$? [/mm]

Was jedenfalls gilt, und das wirst Du sicher bestätigen können:
[mm] $$\vec{x}A\vec{y}=\sum_{j=1}^m \sum_{k=1}^n a_{k,j}x_k y_j\,,$$ [/mm]
wenn [mm] $A=(a_{k,j})_{\substack{k=1,\,\ldots,\,n\\j=1,\,\ldots,\,m}}\,.$ [/mm]

Also: Es ist $f: [mm] \IR^n \times \IR^m \to \IR\,,$ [/mm] und sicher nicht $f: [mm] \IR^n \to \IR^m\,.$ [/mm]

Vll. geht es doch um
$$f: [mm] \IR^n \to \IR^m$$ [/mm]
mit [mm] $f(\vec{x}):=\vec{x}^TA$? [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
1x1 Matrix partiell stetig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Di 12.05.2009
Autor: Newbie89

da stimmt immer noch etwas nicht. Denn mit
[mm] $$f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}$$ [/mm]
sollte [mm] $\vec{x} \in \IR^{n}$ [/mm] und [mm] $\vec{y} \in \IR^m$ [/mm] sein, also wäre [mm] $f\,$ [/mm] eine Abbildung [mm] $$\IR^n \times \IR^m \to \IR\,.$$ [/mm]

Genau das war mein Fehler, habe vergessen und nicht dabei bedacht, dass die Abbildung nach [mm] \IR [/mm] definiert wurde.

Aber wie mache ich das weiter bzgl. der Aufgabenstellung?

Bezug
                                        
Bezug
1x1 Matrix partiell stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Mi 13.05.2009
Autor: Marcel

Hallo,

> da stimmt immer noch etwas nicht. Denn mit
>  [mm]f(\vec{x},\vec{y})=\vec{x}^{T}A \vec{y}[/mm]
>  sollte [mm]$\vec{x} \in \IR^{n}$[/mm]
> und [mm]$\vec{y} \in \IR^m$[/mm] sein, also wäre [mm]$f\,$[/mm] eine
> Abbildung [mm]\IR^n \times \IR^m \to \IR\,.[/mm]
>
> Genau das war mein Fehler, habe vergessen und nicht dabei
> bedacht, dass die Abbildung nach [mm]\IR[/mm] definiert wurde.
>  
> Aber wie mache ich das weiter bzgl. der Aufgabenstellung?

wenn ich die Aufgabe nicht fehlinterpretiere, so kannst Du
[mm] $$f(x_1,\,\ldots,\,x_n,y_1,\,\ldots,\,y_m)=\vec{x}A\vec{y}=\sum_{j=1}^m \sum_{k=1}^n a_{k,j}x_k y_j\,, [/mm] $$
schreiben und nun vielleicht zunächst die Jacobimatrix von [mm] $f\,$ [/mm] berechnen (was hier speziell der transponierte Gradient von [mm] $f\,$ [/mm] ist).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]