www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis2-dim. Volumen mit Cavalieri
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - 2-dim. Volumen mit Cavalieri
2-dim. Volumen mit Cavalieri < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2-dim. Volumen mit Cavalieri: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:57 Do 08.09.2005
Autor: westpark

Hallo,

mittels des Cavalierischen Prinzips soll ich das 2-dim. Volumen der folgenden Menge bestimmen:

M:= {(x,y) [mm] \in \IR² [/mm] | x [mm] \in [/mm] [-1,1], y [mm] \le \wurzel{1+x²}, [/mm] y [mm] \ge [/mm] -2x-2, y [mm] \ge [/mm] 2x-2}

M ist messbar, da abgeschlossen.

Ich habe M skizziert und setze
M(x) = {y [mm] \in \IR [/mm] | -2x-2 [mm] \le [/mm] y [mm] \le [/mm] wurzel{1+x²} } =:M1, falls x [mm] \in [/mm] [-1,0]
M(x) = {y [mm] \in \IR [/mm] | 2x-2 [mm] \le [/mm] y [mm] \le [/mm] wurzel{1+x²} }=:M2, falls x [mm] \in [/mm] [0,1]
M(x) = Ø, sonst

Für alle x [mm] \in [/mm] [-1,0] gilt dann: Maß(M1) =

und an der Stelle komme ich nicht weiter.

Maß(M1) ist ja die Fläche zwischen 2 Graphen, daher hätte ich sie einfach wie folgt bestimmt:
Maß(M1) =  [mm] \integral_{-1}^{0} [/mm] {wurzel{1+x²} - (-2x-2) dx}
[Formal wäre es: [mm] \lambda_{2}(M) [/mm] =  [mm] \integral_{[-1,0]}^{} {\lambda(M1) d\lambda}, [/mm] korrekt? ..wobei [mm] \lambda(M1) [/mm] = wurzel{1+x²} - (-2x-2), ist das richtig? Und weil f stetig über dem Kompaktum M1 ist, ist M1 messb. und f auf M1 Lebesgue-integrierbar und es folgt, dass dieses L-Integral gleich dem Riemann-Integral ist, welches ich oben angegeben habe?]

Analog für M2 und dann einfach beide Maße aufaddiert. Aber ob das richtig ist, weiß ich nicht, v.a. weil das Integral über wurzel{1+x²} ohne Hilfsmittel gar nicht so leicht zu bestimmen ist.

Könnte mir daher jemand sagen, wie es an obiger "Sackgasse" weitergeht oder auf die oben genannten Leitfragen eingehen?

Vielen Dank im Voraus und mit freundlichen Grüßen verbleibend
westpark.

        
Bezug
2-dim. Volumen mit Cavalieri: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Do 08.09.2005
Autor: AT-Colt

Was Du geschrieben hast, ist alles richtig, Du hast auch die Schnitte auf Höhe x richtig bestimmt (obere Funktionsgrenze minus untere Funktionsgrenze).
Wenn Du jetzt übrigens siehst, dass $-2*x-2, -1<x<0$ und $2*x-2, 0<x<1$ nichts anderes ist als $2*|x|-2$, siehst Du auch, dass die beiden Flügel dieses "Pfeils" dasselbe Volumen haben, [mm] $\wurzel{1+x^2}$ [/mm] ist aber in der Tat nicht ohne weiteres zu integrieren ^^;



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]