www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische Statistik2. Moment und Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - 2. Moment und Varianz
2. Moment und Varianz < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2. Moment und Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Fr 29.01.2010
Autor: cluedo

Hi,

ich sitze hier gerade an einem Problem mit Momenten. Das $k$-te  Moment berechnet sich doch für diskrete Zufallsvariablen und einzelwahrscheinlichkeiten [mm] $p_i$ [/mm] durch
$$
[mm] m_k [/mm] = [mm] \sum_{i=1}^n x_i^k p_i [/mm]
$$
für den Erwartungswert als erstes Moment kann ich das noch nachvollziehen. Aber wie geht das mit der Varianz:
$$
[mm] \sigma_X^2 [/mm] = [mm] \frac{1}{n}\sum_{i=1}^n (x_i [/mm] - [mm] \bar{x})^2 [/mm]
$$
das kann ich dann ja nochmal umformen zu
$$
[mm] \sigma_X^2 [/mm] = [mm] \frac{1}{n}\sum_{i=1}^n x_i^2 [/mm] - [mm] \bar{x}^2 [/mm]
$$
das ist doch aber gerade durch den Zweiten term verschieden von der Momentfunktion...

wie kommt man denn da weiter, außer anzunehmen, dass der mittelwert null ist, was ja nicht immer der fall ist, sehe ich einfach nicht wie man da weitermacht

Ich hoffe ihr könnt mir einen kleinen denkanstoß geben.
grüße!

        
Bezug
2. Moment und Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Fr 29.01.2010
Autor: SEcki


> ich sitze hier gerade an einem Problem mit Momenten. Das
> [mm]k[/mm]-te  Moment berechnet sich doch für diskrete
> Zufallsvariablen und einzelwahrscheinlichkeiten [mm]p_i[/mm] durch
> [mm][/mm]
>  [mm]m_k[/mm] = [mm]\sum_{i=1}^n x_i^k p_i[/mm]
> [mm][/mm]
>  für den Erwartungswert als
> erstes Moment kann ich das noch nachvollziehen. Aber wie
> geht das mit der Varianz:

Ganz einfach - die Varianz ist nicht das zweite Moment, vergleich den guten []Wiki-Eintrag.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]