www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssysteme2 Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - 2 Gleichungen
2 Gleichungen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Gleichungen: Aufgabe mit x²,y²,x und y
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 10.05.2006
Autor: Faaz

Aufgabe
Gebe die Werte für x und y an!
0=x²-14x+y²-10y-7
0=x²-3x+y²-16y+27

Ein sonniges Hallo an alle Foren User (zumindestens die, die aus dem Norden kommen, denn hier scheint die Sonne :-P)
Vor mir liegt die oben genannte Aufgabe und ich bin mir ein wenig unsicher, wie ich sie lösen soll, bzw. ob mein Rechenweg der richtige ist/war.
Zunächst habe ich die I. Gleichung minus die II. Gleichung ausgerechnet:
0=-11x+6y-34
0=x²-3x+y²-16y+27

für y bekomm ich dann:   y= 34/6 + (11/6)x

dieses Wert habe ich dann in die erste Gleichung der AUFGABE eingesetzt (hoffe, dass hier nicht schon mein Fehler lag)

0=x² - 14x + (34/6 + (11/6)x)² - 10(34/6+(11/6)x)-7

Nach langem Rechnen bekomme ich für
x1=-2517/157 + /wurzel{(4652649/157²)+(632/157)} und für
x2=-2517/157 -  /wurzel{(4652649/157²)+(632/157)} raus

(x ~ 0,1457  und  x ~ -27,6234)

Um nun y herauszubekommen, habe ich diese Werte in die Gleichung y= 34/6 + (11/6)x eingesetzt und komme dann auf

y ~ 5,9338  und y~-44,9762


Puh... geschafft
Nunja, bin mir wirklicht nicht sicher, ob das so richtig ist!

Freue mich auf feedback / tips / verbesserungen!
Danke schonmal im Vorraus :)

mfG FaaZ


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
2 Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mi 10.05.2006
Autor: Disap

Moin Faaz, herzlich [willkommenmr]

> Gebe die Werte für x und y an!
>  0=x²-14x+y²-10y-7
>  0=x²-3x+y²-16y+27
>  Ein sonniges Hallo an alle Foren User (zumindestens die,
> die aus dem Norden kommen, denn hier scheint die Sonne
> :-P)

Na da habe ich ja Glück [sunny]

>  Vor mir liegt die oben genannte Aufgabe und ich bin mir
> ein wenig unsicher, wie ich sie lösen soll, bzw. ob mein
> Rechenweg der richtige ist/war.
>  Zunächst habe ich die I. Gleichung minus die II. Gleichung
> ausgerechnet:
>  0=-11x+6y-34
>  0=x²-3x+y²-16y+27

[ok]

> für y bekomm ich dann:   y= 34/6 + (11/6)x

[ok]  

> dieses Wert habe ich dann in die erste Gleichung der
> AUFGABE eingesetzt (hoffe, dass hier nicht schon mein
> Fehler lag)

Das darf man wohl machen.
  

> 0=x² - 14x + (34/6 + (11/6)x)² - 10(34/6+(11/6)x)-7

[ok]  

> Nach langem Rechnen bekomme ich für

Ja, da hast du dich leider beim langem Rechnen verrechnet :)

> x1=-2517/157 + /wurzel{(4652649/157²)+(632/157)} und für
> x2=-2517/157 -  /wurzel{(4652649/157²)+(632/157)} raus
>
> (x ~ 0,1457  und  x ~ -27,6234)

Als Lösung erhalte ich

[mm] x_1 \approx [/mm] 4.32
[mm] x_2 \approx [/mm] -1.674

Evtl. verrechnest du dich beim Auflösen des Binoms? :
[mm] 0=x^2 [/mm] - 14x + [mm] (\br{34}{6} [/mm] + [mm] \br{11}{6}x)^2 [/mm] - [mm] 10(\br{34}{6} [/mm] + [mm] \br{11}{6}x)-7 [/mm]

[mm] 0=x^2 [/mm] - 14x [mm] +(\br{34}{6})^2+(\br{2*34}{6}*\br{11}{6}x)+(\br{11}{6}x)^2 [/mm] - [mm] 10(\br{34}{6} [/mm] + [mm] \br{11}{6}x)-7 [/mm]

Mehr kann ich dazu nicht sagen, ausser: versuchs noch einmal.

> Um nun y herauszubekommen, habe ich diese Werte in die
> Gleichung y= 34/6 + (11/6)x eingesetzt und komme dann auf
>  
> y ~ 5,9338  und y~-44,9762
>  
>
> Puh... geschafft
>  Nunja, bin mir wirklicht nicht sicher, ob das so richtig
> ist!

Das weitere Vorgehen wäre jedenfalls richtig (obs auch richtig gerechnet ist, habe ich nicht überprüft,d a du ja schon vorher einen Fehler hattest)

> Freue mich auf feedback / tips / verbesserungen!
>  Danke schonmal im Vorraus :)
>  
> mfG FaaZ
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

mfG Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]