www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiation2 Konstantheits-Beweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - 2 Konstantheits-Beweise
2 Konstantheits-Beweise < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Konstantheits-Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Sa 21.07.2012
Autor: Trikolon

Aufgabe
a) Es sei f:IR-->IR stetig und es gelte [mm] f(x)=f(x^2) [/mm] für alle x [mm] \in [/mm] IR. Zeige, dass f konstant ist.
b) Sei L>0 und f:IR-->IR eine diffbare Fkt mit [mm] |f(x)-f(y)|

a) Hier habe ich leider keine Idee, wie ich das angehen könnte...
b) Ich vermute, es läuft darauf hinaus dass ich zeigen muss, dass f'(x)=0, denn dann ist f ja konstant.
Wenn ich [mm] |f(x)-f(y)|
Danke schonmal für eure Hilfe!

        
Bezug
2 Konstantheits-Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 21.07.2012
Autor: steppenhahn

Hallo,


> a) Es sei f:IR-->IR stetig und es gelte [mm]f(x)=f(x^2)[/mm] für
> alle x [mm]\in[/mm] IR. Zeige, dass f konstant ist.
>  b) Sei L>0 und f:IR-->IR eine diffbare Fkt mit
> [mm]|f(x)-f(y)|
> konstant ist.
>  a) Hier habe ich leider keine Idee, wie ich das angehen
> könnte...

Zunächst sollte $f$ achsensymmetrisch zur $y$-Achse sein, denn: ....

Eine Idee von mir wäre:

Seien $a,b [mm] \in \IR$ [/mm] mit $f(a) [mm] \not= [/mm] f(b)$.

Evtl. kann man nun ausnutzen (wenn a,b > 0, das muss man noch sauber ausformulieren und begründen, dass man das für a,b annehmen kann), dass [mm] $x_n [/mm] := [mm] a^{(2^{-n})}, y_n [/mm] := [mm] b^{(2^{-n})}$ [/mm] erfüllen:

[mm] $f(x_{n}) [/mm] = [mm] f(x_{n}^2) [/mm] = [mm] f^{x_{n-1}} [/mm] = ... = f(a), [mm] f(y_n) [/mm] = f(b)$ für alle $n [mm] \in \IN$. [/mm]

Nun gilt ja auch [mm] $x_n \to [/mm] 1, [mm] y_n \to [/mm] 1$. (n-te Wurzeln von Konstanten).
Wieso ist das ein Widerspruch zur Stetigkeit?


>  b) Ich vermute, es läuft darauf hinaus dass ich zeigen
> muss, dass f'(x)=0, denn dann ist f ja konstant.
> Wenn ich [mm]|f(x)-f(y)|
> [mm]\bruch{|f(x)-f(y)|}{|x-y|}
> Seite, wenn man noch den Grenzwert x-->y betrachten würde,
> der Differenzenquotient. Hilft das weiter?

Ja, damit hast du es doch schon gelöst.
Sei [mm] $x_0 \in \IR$ [/mm] beliebig, $x [mm] \in \IR$ [/mm] mit [mm] $x\not= x_0$. [/mm] Dann ist nach Voraussetzung

[mm] $\left|\frac{f(x) - f(x_0)}{x - x_0}\right| \le [/mm] L [mm] \cdot [/mm] |x - [mm] x_0|$. [/mm]

Da $f$ diffbar existiert

[mm] $f'(x_0) [/mm] = [mm] \lim_{x \to x_0}\frac{f(x) - f(x_0)}{x - x_0}$, [/mm]

und somit auch

[mm] $|f'(x_0)| [/mm] = [mm] \lim_{x \to x_0}\left|\frac{f(x) - f(x_0)}{x - x_0}\right| \le \lim_{x\to x_0} [/mm] L [mm] \cdot [/mm] | x - [mm] x_0| [/mm] = 0.$

Daher [mm] $f'(x_0) [/mm] = 0$.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]