www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstiges2^n = 10^9
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - 2^n = 10^9
2^n = 10^9 < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2^n = 10^9: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 21.04.2009
Autor: BlubbBlubb

Aufgabe
löse folgendes gleichungssystem:

[mm] 2^n [/mm] = [mm] 10^9 [/mm]

also ich wollte dieses gleichungssystem lösen, aber ich finde einfach keinen ansatz, kann mir da jemanden einen tipp geben?

        
Bezug
2^n = 10^9: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 21.04.2009
Autor: glie


> löse folgendes gleichungssystem:
>  
> [mm]2^n[/mm] = [mm]10^9[/mm]
>  also ich wollte dieses gleichungssystem lösen, aber ich
> finde einfach keinen ansatz, kann mir da jemanden einen
> tipp geben?


Hallo,

ein erster "kleiner" Tipp wäre:

Du willst an den Exponenten heran --- also logarithmiere!

Gruß Glie

Bezug
                
Bezug
2^n = 10^9: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Di 21.04.2009
Autor: BlubbBlubb

da hab ich auch schon drüber nachgedacht.

soweit ich weiß ist ja

ln( [mm] (e^a)^b [/mm] ) = ln( [mm] e^{ba}) [/mm]

aber

ln( [mm] e^{(a^b)}) \not= [/mm] ln( [mm] e^{ba}) [/mm]



ich wollte folgenden ansatz ausprobieren:

[mm] 2^n [/mm] = ln( [mm] e^{(2^n)} [/mm] ) aber das bringt mich nicht weiter, da

ln( [mm] e^{(2^n)}) \not= [/mm] ln ( [mm] e^{(2n)}) [/mm] ist

Bezug
                        
Bezug
2^n = 10^9: Tipp
Status: (Antwort) fertig Status 
Datum: 18:46 Di 21.04.2009
Autor: MathePower

Hallo BlubbBlubb,

> da hab ich auch schon drüber nachgedacht.
>  
> soweit ich weiß ist ja
>
> ln( [mm](e^a)^b[/mm] ) = ln( [mm]e^{ba})[/mm]
>  
> aber
>
> ln( [mm]e^{(a^b)}) \not=[/mm] ln( [mm]e^{ba})[/mm]
>  
>
>
> ich wollte folgenden ansatz ausprobieren:
>  
> [mm]2^n[/mm] = ln( [mm]e^{(2^n)}[/mm] ) aber das bringt mich nicht weiter, da
>
> ln( [mm]e^{(2^n)}) \not=[/mm] ln ( [mm]e^{(2n)})[/mm] ist


Tipp: [mm]a^{b}=e^{b*\ln\left(a\right)}[/mm]


Gruß
MathePower

Bezug
                                
Bezug
2^n = 10^9: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Di 21.04.2009
Autor: BlubbBlubb

okay ich habs:

[mm] 2^n [/mm] = [mm] 10^9 [/mm]

[mm] (e^{ln(2)})^n [/mm] = [mm] (e^{ln(10)})^9 [/mm]

n*ln(2) = 9*ln(10)

n = [mm] \bruch{9*ln(10)}{ln(2)} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]