www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnung3 Von 8
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - 3 Von 8
3 Von 8 < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3 Von 8: Wahrscheinlichkeit
Status: (Frage) beantwortet Status 
Datum: 17:33 Do 26.01.2012
Autor: BWLStudy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo liebe Gemeinde.

Bin gerade bei der wohl einfachen  u.a. Aufagbe am scheitern, benötigen etwas Hilfestellung.

In einem Fundbüro liegen 8 Schirme. 3 personen melden den Verlust. Der Angestellte reicht jeder der 3 Personen willkürlich einen Schirm. Wie groß ist die Wahrscheinlichkeit dass,

a) jeder seinen Schirm erhält

b) mindestens einer seinen Schrim erhält.

würde mich freuen...

        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 26.01.2012
Autor: Diophant

Hallo,

> Bin gerade bei der wohl einfachen  u.a. Aufagbe am
> scheitern, benötigen etwas Hilfestellung.

wenn du am Scheitern bist, dann hast du ja schon das eine oder andere überlegt oder gar ausprobiert. Das könntest du dann in ZUkunft noch mit angeben, im Sinne einer zielführenden Hilfestellung.

Mache dir bei der a) klar, dass der Angestellte sicherlich die Schirme hintereinander ausgeben wird. Was hat das für das zugrundeliegende Zählmodell für eine Konsequenz (->Urnenmodelle)?

Bei b) würde ich zweckmäßigerweise über das Gegenereignis (Komplementärereignis) gehen. Wie lautet selbiges?

Gruß, Diophant

  

Bezug
                
Bezug
3 Von 8: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Do 26.01.2012
Autor: BWLStudy

Hallo.

Wenn ich mich auf dass Urnenmodell beziehe:

a) würde dass ja heißen ich habe 8Schirme und nehme ins. 3  weg

also: 3/8 x 2/7 x 1/6 ??? haber dass wäre ja zu einfach gedacht oder da ich ja berechnen muss dss alle 3 Ihren Schirm bekommen...

Bezug
                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Do 26.01.2012
Autor: Diophant

Hallo,

> also: 3/8 x 2/7 x 1/6 ??? haber dass wäre ja zu einfach
> gedacht oder da ich ja berechnen muss dss alle 3 Ihren
> Schirm bekommen...

doch: manchmal ist alles einfacher, als man glaubt. Deine Rechnung stimmt nämlich. :-)

EDIT:
Sorry, da war ich etwas vorschnell. Das ist noch falsch, aber ich glaube, eine richtige Grundidee steckt schon dahinter. Nur: wie groß ist die Wahrscheinlichkeit, dass der erste Schirm zu seinem Besitzer zurückfindet?

Gruß, Diophant


Bezug
                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 26.01.2012
Autor: Walde

Hi bwlstudy, hi Diophant

> Hallo.
>  
> Wenn ich mich auf dass Urnenmodell beziehe:
>  
> a) würde dass ja heißen ich habe 8Schirme und nehme ins.
> 3  weg
>  
> also: 3/8 x 2/7 x 1/6 ??? haber dass wäre ja zu einfach
> gedacht oder da ich ja berechnen muss dss alle 3 Ihren
> Schirm bekommen...

Ich glaube  die W'keit muß [mm] \bruch{1}{8}*\bruch{1}{7}*\bruch{1}{6} [/mm] sein. Mit [mm] \bruch{1}{\vektor{8 \\ 3}} [/mm] ist meiner Meinung nach nicht berücksichtigt, dass jeder auch seinen eigenen Schirm erhält, sondern nur, dass die 3 (von 8) vom Angestellten ausgewählten Schirme diejenigen sind, die den Personen gehören, die sich beim Fundbüro gemeldet haben. Es gibt jedoch 3! Möglicheiten, wie der Angestellt den Personen die Schirme gibt. Jedoch ist nur eine davon diejenige, bei der jeder seinen eignen Schirm auch bekommt.

Was meint ihr dazu?

LG walde




Bezug
                                
Bezug
3 Von 8: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:31 Do 26.01.2012
Autor: Diophant

Hallo walde,

> Ich glaube  die W'keit muß
> [mm]\bruch{1}{8}*\bruch{1}{7}*\bruch{1}{6}[/mm] sein. Mit
> [mm]\bruch{1}{\vektor{8 \\ 3}}[/mm] ist meiner Meinung nach nicht
> berücksichtigt, dass jeder auch seinen eigenen Schirm
> erhält, sondern nur, dass die 3 (von 8) vom Angestellten
> ausgewählten Schirme diejenigen sind, die den Personen
> gehören, die sich beim Fundbüro gemeldet haben. Es gibt
> jedoch 3! Möglicheiten, wie der Angestellt den Personen
> die Schirme gibt. Jedoch ist nur eine davon diejenige, bei
> der jeder seinen eignen Schirm auch bekommt.
>  
> Was meint ihr dazu?

Genau so ist es natürlich: ich hatte mich auch vertan, habe es oben aber mittleweile editiert. Vielen Dank für die Aufmerksamkeit!

Gruß, Diophant

Bezug
                                
Bezug
3 Von 8: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Do 26.01.2012
Autor: BWLStudy

Hallo.

Also euere Lösungen klingen sehr einleuchtend, da der erste ja eine 1/8 chance hat seinen schirm zu bekommen usw. es kann manchmal so einfach sein.

und meine 2 Frage bzw. b) mindestens einer seinen schirm erhält??

kann ich da die komplementärregel anwenden. also das gegenteil wäre dann keiner bekommt einen schirm bzw. nur einer also 7/8..

1- (7/8)°3 ??

Bezug
                                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 26.01.2012
Autor: Diophant

Hallo,

> und meine 2 Frage bzw. b) mindestens einer seinen schirm
> erhält??
>  
> kann ich da die komplementärregel anwenden. also das
> gegenteil wäre dann keiner bekommt einen schirm bzw. nur
> einer also 7/8..
>  
> 1- (7/8)°3 ??

fast: bedenke aber: wenn ein Schirm ausgegeben wurde, dann gibt es für den nächsten Kunden nur noch 6 falsche Schirme, usw.

Gruß, Diophant

Bezug
                                                
Bezug
3 Von 8: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Do 26.01.2012
Autor: BWLStudy

also jetzt falsch oder fast richtig??

heißt wenn einer rausgeht, der richtige dann sind nur noch 7 im korb und daher 7 falsche... und dann??

Bezug
                                                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Fr 27.01.2012
Autor: Diophant

Hallo,

> also jetzt falsch oder fast richtig??

falsch. Und: auch meine erste Idee, wie man das angeht, war falsch. Denn diese Frage ist um ein vielfaches schwieriger zu beantworten, als die Frgae a). Das zeigt mal wieder schön, wie sehr in der Stochastik sozusagen der Teufel im Detail der präzisen Formulierungen steckt.

Es wäre gut zu wissen, welchen Hintergrund in Sachen Kombinatorik du hast. Habt ihr speziell die Siebformel (andere Bezeichnungen: Formel von Sylvester, Einschluss-Ausschluss-Prinzip, etc) durchgenommen? Falls ja, so wäre das mein Tipp. Falls nein, so kommt man hier wegen der geringen Anzahl auch ohne durch, aber ich möchte dich auf folgendes Problem aufmerksam machen:

Person 1 findet 8 Schirme vor, einer davon gehört ihr/ihm. Die Wahrscheinlichkeit, dass hier ein falscher Schirm ausgegeben wird ist tatsächlich 7/8. Jetzt aber wird die Sache knifflig. Person 2 betritt die Bühne. Und nun gibt es zwei Möglichkeiten. Entweder, der Schirm von Person 2 ist noch da, dann wäre jetzt die Wahrscheinlichkeit für einen falschen Schirm gleich 6/7. Oder aber: Person 1 hat den Schirm von Person 2 bekommen, dann bekommt Person 2 auf jeden Fall einen falschen Schirm. Diese Schwierigkeit gilt es, irgendwie zu berücksichtigen. Es würde natürlich auch via Baumdiagramm gehen, bedenke aber, dass auch noch Person 3 ins Spiel kommt...

Gruß, Diophant

Bezug
                                                                
Bezug
3 Von 8: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 27.01.2012
Autor: BWLStudy

Hallo.

also wie gesagt ich bin im 4 semester Bwl mit anfang 30, d.h. satistik lange lange her.also die Grundbegriffe haben wir leider nicht durchgenommen ist halt ein fernstudium..muss mir alles alleine bei bringen...

ich merke schon schwierig...

also kann ich nicht [mm] 1-(7/8)^3 [/mm] rechnen..

Bezug
                                                                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Fr 27.01.2012
Autor: Diophant

Hallo,

> also kann ich nicht [mm]1-(7/8)^3[/mm] rechnen..

nein, das wäre falsch.

Es wäre sehr hilfreich, wenn du einigermaßen den Rahmen der aktuellen Veranstaltung/des aktuellen Skriptes abstecken könntest.

Prinzipiell ist die Aufgabe b) vom kombinatorischen her eher anspruchsvoll. Durch die geringe Anzahl der Schirmbesitzer kann man das jedoch auch - etwas umständlich - mit elementaren Mitteln bewältigen. Im Sinne einer für dich zielführenden und hilfreichen Antwort hätte ich vorher gerne die zur Verfügung stehenden stochastischen bzw. kombinatorischen Mittel abgeklärt.

Gruß, Diophant

Bezug
                                                                        
Bezug
3 Von 8: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 So 29.01.2012
Autor: Walde

Hi allerseits,

also Diophant hat schon Recht: je mehr Info's man darüber hat, mit welchen Begriffen der Fragesteller etwas anfangen kann, desto effektiver kann die Antwort formuliert werden. Du hast jetzt nix mehr gesagt, aber ich geb hier trotzdem mal nen Ansatz. Diophant, du liest hoffentlich mit und sagst,falls was nicht stimmt. (Kann ja bei Stoch leider immer passieren.)

Ich teile das Problem mal in zwei Stufen auf:

Als Erstes werden 3 Schirme willkürlich ausgewählt. Die ZV X sei die Anzahl der ausgewählten Schirme, die den Personen gehören, die beim Fundbüro aufgetaucht sind. X ist hypergeometrisch verteilt.

Als Zweites werden nun die 3 (in Erstens) ausgewählten Schirme zufällig an die Personen verteilt. Jede der jeweils 3! Möglichkeiten ist gleichwahrscheinlich, das Ereignis K, das keine der Personen ihren Schirm erhält, ist allerdings von X abhängig. Das ist das Schwierige bei der Aufgabe.

So hat man [mm] P(K)=P(X=0)*P(K|X=0)+P(X=1)*P(K|X=1)+\ldots+P(X=3)*P(K|X=3) [/mm] und während die W'keiten für X leicht anzugeben sind, muß man die bedingten Wahrscheinlichkeiten durch Abzählen ermittlen, jedenfalls würde ich das so machen und Diophant hat es ja auch schon so vorgeschlagen. Es sind ja jeweils nur 6 Möglichkeiten. Die Antwort auf díe Aufgabe wäre dann [mm] P(\overline{K})=1-P(K). [/mm]

Lg walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]