www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorie4-adische Dst.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - 4-adische Dst.
4-adische Dst. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

4-adische Dst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 So 25.07.2010
Autor: congo.hoango

Aufgabe
i) Berechnen Sie b [mm] \in \mathbb{N} [/mm] so, dass [mm] 0,\overline{0001001} [/mm] die 4-adische Darstellung von [mm] \bruch{1}{b} [/mm] ist.

ii) Geben Sie die 2-adische Darstellung von [mm] \bruch{1}{b} [/mm] an.

iii) Welche Periodenläöngen können bei einer g-adischen Darstellung von [mm] \bruch{1}{b} [/mm] genau auftreten? Geben Sie jeweils ein zugehöriges g [mm] \in \mathbb{N}, [/mm] g > 1 an.

Hallo,

ich bins mal wieder :-)

Lerne gerade für eine Klausur und gehe alte Klausuraufgaben durch und bin dabei immer wieder über diesen Aufgabentyp gestolpert...

Das Problem ist: Wir haben bisher immer nur normal umgerechnet in den Zahlensystemen. Sprich ich könnte die 4-adische Dst. von [mm] \bruch{1}{24} [/mm] z.B. ausrechnen. Aber wie ich diese Aufgabe lösen soll weiß ich leider überhaupt nicht.

Bei i) ist also ein b gesucht, sodass [mm] (\bruch{1}{b})_4 [/mm] = [mm] 0,\overline{0001001} [/mm] ist. Also eine Vorperiodenlänge 0 und Periodenlänge 7 hat.

Das einzige was ich jetzt im Script gefunden habe ist:

[mm] \bruch{a}{b}=\bruch{B}{g^l(g^p-1)} [/mm] für ein [mm] B\in \mathbb{N}, [/mm] wobei l der Vorperiodenlänge und p der Periodenlänge entspricht.

Auf die Aufgabe übertragen, steht dann da:

[mm] \bruch{1}{b}=\bruch{B}{4^0(4^7-1)}=\bruch{B}{16383} [/mm]

Bringt mir das was? Kann ich irgendwas über das B aussagen?

Gruß
congo

        
Bezug
4-adische Dst.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 25.07.2010
Autor: MathePower

Hallo congohoango,

> i) Berechnen Sie b [mm]\in \mathbb{N}[/mm] so, dass
> [mm]0,\overline{0001001}[/mm] die 4-adische Darstellung von
> [mm]\bruch{1}{b}[/mm] ist.
>
> ii) Geben Sie die 2-adische Darstellung von [mm]\bruch{1}{b}[/mm]
> an.
>
> iii) Welche Periodenläöngen können bei einer g-adischen
> Darstellung von [mm]\bruch{1}{b}[/mm] genau auftreten? Geben Sie
> jeweils ein zugehöriges g [mm]\in \mathbb{N},[/mm] g > 1 an.
>  Hallo,
>  
> ich bins mal wieder :-)
>  
> Lerne gerade für eine Klausur und gehe alte
> Klausuraufgaben durch und bin dabei immer wieder über
> diesen Aufgabentyp gestolpert...
>  
> Das Problem ist: Wir haben bisher immer nur normal
> umgerechnet in den Zahlensystemen. Sprich ich könnte die
> 4-adische Dst. von [mm]\bruch{1}{24}[/mm] z.B. ausrechnen. Aber wie
> ich diese Aufgabe lösen soll weiß ich leider überhaupt
> nicht.
>  
> Bei i) ist also ein b gesucht, sodass [mm](\bruch{1}{b})_4[/mm] =
> [mm]0,\overline{0001001}[/mm] ist. Also eine Vorperiodenlänge 0 und
> Periodenlänge 7 hat.
>
> Das einzige was ich jetzt im Script gefunden habe ist:
>  
> [mm]\bruch{a}{b}=\bruch{B}{g^l(g^p-1)}[/mm] für ein [mm]B\in \mathbb{N},[/mm]
> wobei l der Vorperiodenlänge und p der Periodenlänge
> entspricht.
>  
> Auf die Aufgabe übertragen, steht dann da:
>  
> [mm]\bruch{1}{b}=\bruch{B}{4^0(4^7-1)}=\bruch{B}{16383}[/mm]
>  
> Bringt mir das was? Kann ich irgendwas über das B
> aussagen?


B muß ein Teiler von 16383 sein.


Schreibe die g-adische Darstellung als Dezimalzahl:

[mm]0,\overline{0001001}_{4}=0*\bruch{1}{4}+0*\bruch{1}{4^{2}}+0*\bruch{1}{4^{3}}+1*\bruch{1}{4^{4}}+0*\bruch{1}{4^{5}}+0*\bruch{1}{4^{6}}+1*\bruch{1}{4^{7}}[/mm]

[mm]+0*\bruch{1}{4^{8}}+0*\bruch{1}{4^{9}}+0*\bruch{1}{4^{10}}+1*\bruch{1}{4^{11}}+0*\bruch{1}{4^{12}}+0*\bruch{1}{4^{13}}+1*\bruch{1}{4^{14}}+ \ ... [/mm]

Dann stellst Du fest, dass das nicht möglich ist.

Um dennoch ein [mm]b\in \IN[/mm] zu finden,
muß die g-adische Darstellung so aussehen:

[mm]0,0\overline{001001}_{4}[/mm]


>  
> Gruß
>  congo


Gruss
MathePower

Bezug
                
Bezug
4-adische Dst.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 25.07.2010
Autor: felixf

Moin!

> > i) Berechnen Sie b [mm]\in \mathbb{N}[/mm] so, dass
> > [mm]0,\overline{0001001}[/mm] die 4-adische Darstellung von
> > [mm]\bruch{1}{b}[/mm] ist.

Man kann das ganze auch ueber die geometrische Reihe ausrechnen. Das ganze ist ja [mm] $(4^0 [/mm] + [mm] 4^3) \cdot \sum_{i=1}^\infty 4^{-7 i}$. [/mm] Und nach der geometrischen Reihe ist dies $65 [mm] \cdot \frac{4^{-7}}{1 - 4^{-7}} [/mm] = [mm] \frac{65}{4^7 - 1} [/mm] = [mm] \frac{65}{16383}$. [/mm] Das ist ein gekuerzter Bruch, also definitiv nicht von der Form [mm] $\frac{1}{b}$. [/mm]

> Um dennoch ein [mm]b\in \IN[/mm] zu finden,
>  muß die g-adische Darstellung so aussehen:
>  
> [mm]0,0\overline{001001}_{4}[/mm]

Dann koennte man auch gleich [mm] $0{,}0\overline{001}_4$ [/mm] schreiben ;-)

(Gehen wuerde auch [mm] $0{,}\overline{001}_4$.) [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]