www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlen4. Wurzel aus 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - 4. Wurzel aus 1
4. Wurzel aus 1 < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

4. Wurzel aus 1: Wie kann ich das berechnen?!
Status: (Frage) beantwortet Status 
Datum: 15:10 Mo 25.06.2012
Autor: herbi_m

Aufgabe
Berechne alle Lösungen von [mm] \wurzel[4]{1} [/mm] und zeichne die Lösungen in die Gaußsche Zahlenebene ein.

Meine Überlegungen:
1 ist doch eigentlich nichts anderes als [mm] i^4 [/mm] = (-1) * (-1)
Also müsste doch dann [mm] \wurzel[4]{i^4} [/mm] = i sein.
Was mich an der Aufgabenstellung etwas stutzig macht, ist jedoch, dass von mehreren Lösungen gesprochen wird.
Wäre super, wenn mir da jemand helfen könnte.
Lg
herbi

        
Bezug
4. Wurzel aus 1: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 15:14 Mo 25.06.2012
Autor: Roadrunner

Hallo herbi!


In der Menge [mm] $\IC$ [/mm] der komplexen Zahlen hat [mm] $\wurzel[4]{1}$ [/mm] bzw. die Gleichung [mm] $z^4 [/mm] \ = \ 1$ auch insgesamt 4 Lösungen.

Betrachte dafür die MBMoivre-Formel.


Gruß vom
Roadrunner

Bezug
                
Bezug
4. Wurzel aus 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 25.06.2012
Autor: herbi_m

Hi! Vielen Dank erstmal für den Link zu der Formel!

Ich bin mir allerdings nicht sicher, ob ich das jetzt richtig verstanden habe.
Das scheint ja etwas damit zu tun zu haben, dass ich in meiner Gaußschen Zahlenbene sozusagen "mehrfach im Kreis laufen kann".
Daher ist gilt nicht nur i = [mm] e^{i\pi/2} [/mm] sondern ich kann im Exponenten noch [mm] i2\pi [/mm] *n hinzufügen!

Aber wie sieht das jetzt im Hinblick auf die Aufgabenstellung aus?!
Kann ich davon ausgehen, dass [mm] z^4 [/mm] = [mm] i^4 [/mm] und bzw. z= i und für i dann [mm] e^{i\pi/2}+ i2\pi*n [/mm] und für n dann Werte von 0 bis ?? einsetzen, bis ich wieder auf die Lösung von n=0 komme?!

Bezug
                        
Bezug
4. Wurzel aus 1: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 25.06.2012
Autor: leduart

Hallo
mit [mm] z^4=i^4 [/mm] hast du dir doch eine der vier lösungen rausgepickt, jetzt  i auf mehrere Arten darzustellen hilft gar nichts!
[mm] z^4=1^4 [/mm] und [mm] z^4=(-1)^4 [/mm] wären doch genauso gut kandidaten.
ausserdem solltest du an dem einfachen Bsp ja lernen; und was machst du dann mit den Lösungen z.b [mm] z^4=1+i [/mm] ?
du musst dir schon klar machen, dass mit n  potenzieren heisst den Winkel zur reellen achse zu ver n-fachen, und dass deshalb die umkehrung des potenzieren heisst den Winkel durch n zu teilen, da aber etwa 30° und 390° und 750° usw dasselbe z ergeben, musst du die halt alle durch n teilen.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]