www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorik6-stellige Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - 6-stellige Zahlen
6-stellige Zahlen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

6-stellige Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:30 Di 01.04.2008
Autor: MasterEd

Aufgabe
Aus den 10 Ziffern 0 bis 9 wird eine 6-stellige Zufallszahl gebildet. Dabei kann jede Ziffer innerhalb der Zahl mehrfach vorkommen und die Zufallszahl kann auch mit der 0 beginnen. Wie hoch ist die Wahrscheinlichkeit, dass eine solche Zufallszahl aus 6 unterschiedlichen Ziffern besteht?

Hallo,

meine Frage ist, wie man bei der Aufgabe auf den Ansatz und natürlich auch die Lösung kommt. Ich habe keine Ahnung, wie man das rechnet. Wäre super, wenn mir jemand helfen könnte. Ich habe diese Frage nirgendwo sonst gestellt.

Vielen Dank!

        
Bezug
6-stellige Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Di 01.04.2008
Autor: Teufel

Hallo!

Die Wahrscheinlichkeit dafür lässt sich berechnen mit [mm] p=\bruch{\text{Anzahl der günstigen Zusammenstellungen}}{\text{Anzahl aller möglichen Zusammenstellungen}}. [/mm]

Jetzt musst du noch diese beiden Anzahlen raus finden!

Anzahl aller möglichen Zusammenstellungen:
Die erste Zahl kann 0, 1, 2, ... 9 sein, also hast du 10 Möglichkeiten dafür. Die 2. Zahl kann wieder eine Zahl zwischen 0 und 9 sein u.s.w. Kommst du damit weiter?

Anzahl der günstigen Zusammenstellungen:
Hier hast du für die erste Ziffer 10 Möglichkeiten, wie schon davor. Aber bei der 2. Ziffer hast du nur noch 9 Möglichkeiten, da ja schon eine Zahl verwendet wurde und die nicht noch einmal vorkommen darf. Für die 3. Stelle hast du dann wie viel Möglichkeiten? Und für die anderen?

Bezug
                
Bezug
6-stellige Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Di 01.04.2008
Autor: MasterEd

Hallo,

also ich kann aus den 10 Ziffern insgesamt [mm] 10^6 [/mm] mögliche 6-stellige Zahlen bilden. Für die "günstigen Zusammenstellungen" (alle Ziffern verschieden) habe ich 10 Möglichkeiten für die erste Stelle, 9 für die zweite Stelle, 8 für die dritte usw. Insgesamt also [mm] $\bruch{10!}{4!}=151200$ [/mm] Stück.

Demnach beträgt die Wahrscheinlichkeit, dass alle Ziffern verschieden sind
[mm] $P=\bruch{151200}{10^6}\approx [/mm] 0,15$, d.h. etwa 85% der Zufallszahlen enthalten mindestens eine Ziffer mindestens doppelt.

Ist das so richtig? Vielen Dank für Deine Hilfe!

Bezug
                        
Bezug
6-stellige Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Di 01.04.2008
Autor: Teufel

Jo, genau das hatte ich auch raus. Da die Zahl eigentlich recht schön war, würde ich auch 15,12% schreiben, aber ist Ansichtssache :) richtig ist richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]