www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Finanzmathematik72er Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - 72er Formel
72er Formel < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

72er Formel: Interpretation des Ergebnisses
Status: (Frage) beantwortet Status 
Datum: 19:17 Do 17.09.2009
Autor: ps_tricks

Aufgabe
An amerikanischen Börsen rechnet man überschlagsmäßig mit folgender "72-er - Formel":
Wird ein Kapital B mit p Prozent verzinst, so verdoppelt sich das Kapital in 72/p
Jahren. Wie gut ist diese Näherung ?

Also ich hab so angefangen:
Es gilt ja:
[mm] $S_{n} [/mm] = B [mm] \cdot r^{n} [/mm] = B [mm] \cdot (1+p)^{n}$ [/mm]
Bei einer Verdoppelung ergibt sich ja dann
$2B = B [mm] \cdot (1+p)^{n}$ [/mm]
und daraus folgt dann nach Umformung
$n = [mm] \frac{log(2)}{log(1+p)}$. [/mm]

Für betragsmäßig kleine $x$ konvergiert ja $log(1+x)$ gegen $x$.
Also ergibt sich annähernd
$n= [mm] \frac{log(2)}{p} \approx \frac{69,3}{p}$. [/mm]

Nun ist ja aber die Frage, wie gut diese Annäherung mit 72 ist. Ich weiss jetzt leider nicht, wie ich das interpretieren soll.

        
Bezug
72er Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Do 17.09.2009
Autor: Al-Chwarizmi


> An amerikanischen Börsen rechnet man überschlagsmäßig
> mit folgender "72-er - Formel":
>  Wird ein Kapital B mit p Prozent verzinst, so verdoppelt
> sich das Kapital in 72/p
>  Jahren. Wie gut ist diese Näherung ?
>  Also ich hab so angefangen:
>  Es gilt ja:
>  [mm]S_{n} = B \cdot r^{n} = B \cdot (1+p)^{n}[/mm]
>  Bei einer
> Verdoppelung ergibt sich ja dann
>  [mm]2B = B \cdot (1+p)^{n}[/mm]
>  und daraus folgt dann nach
> Umformung
> [mm]n = \frac{log(2)}{log(1+p)}[/mm].
>  
> Für betragsmäßig kleine [mm]x[/mm] konvergiert ja [mm]log(1+x)[/mm] gegen
> [mm]x[/mm].
>  Also ergibt sich annähernd
> [mm]n= \frac{log(2)}{p} \approx \frac{69,3}{p}[/mm].
>  
> Nun ist ja aber die Frage, wie gut diese Annäherung mit 72
> ist. Ich weiss jetzt leider nicht, wie ich das
> interpretieren soll.

Mit der logarithmischen Rechnung hast du einmal den
Grund eruiert, weshalb man überhaupt ungefähr nach
einer solchen Faustregel rechnen kann. Dass man mit
72 rechnet, hat sicher damit zu tun, dass 72 durch 2,3,
4,5,6,7,8,9,10,12 sehr leicht zu dividieren ist, und zwar
ohne Taschenrechner.
69.3 wäre für ganz kleine p eine bessere Wahl.

Um die Güte der Approximation für gängige Zins-
sätze etwa im Bereich von 1% bis 12% zu prüfen,
würde ich einfach erst einmal eine Vergleichstabelle
und/oder Grafik erstellen.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]