www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenAWP 1.Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - AWP 1.Ordnung
AWP 1.Ordnung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWP 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Sa 13.11.2010
Autor: moerni

Aufgabe
x [mm] \frac{\partial u}{\partial x} [/mm] (x,y,z) + y [mm] \frac{\partial u}{\partial y} [/mm] (x,y,z) + [mm] \frac{\partial u}{\partial z} [/mm] (x,y,z) = u (x,y,z)

u(x,y,0)=xy

Hallo.

Die Aufgabe ist, alle Lösungen u der obigen DGL explizit anzugeben.

Ich habe den theoretischen Hintergrund dazu noch nicht so ganz verstanden...
Es ist ja so, dass man die DGL in folgender Form schreiben kann:

(x,y,1) [mm] \nabla [/mm] u(x,y,z) = u(x,y,z)

wobei man (x,y,1) als Funktion a(x,y,z)=(x,y,1) auffassen kann. Jetzt ist es irgendwie so, dass irgendwelche Kurven dieses a als Geschwindigkeitsfeld haben (wobei ich auch nicht wirklich weiß, was hier ein Geschwindigkeitsfeld ist).

Diese Kurven lösen nun angeblich die DGL a(x,y,z)=(x,y,z)'=(x,y,1).
Das kann ich lösen. Die Lösung wäre dann:
[mm] x(t)=c_1 [/mm] exp(x(t))
[mm] y(t)=c_2 [/mm] exp(y(t))
[mm] z(t)=t+c_3 [/mm]

Wie gehts jetzt weiter? Irgendwie muss ich jetzt x,y,z miteinander verkoppeln und dann muss das konstant sein. Die Lösungen kann man dann durch eine beliebige Funktion angeben, die nur in der Art und Weise der Argumente eingeschränkt wird. Wie man sehen kann, sind meine Ansätze noch sehr im Dunkeln und verschwommen.

Kann mir jemand meine Lücken erklären und mir weiterhelfen, was ich machen muss und wie die Zusammenhänge sind?

Darüber würde ich mich sehr freuen und wäre sehr dankbar.
lg moerni

        
Bezug
AWP 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 So 14.11.2010
Autor: MathePower

Hallo moerni,

> x [mm]\frac{\partial u}{\partial x}[/mm] (x,y,z) + y [mm]\frac{\partial u}{\partial y}[/mm]
> (x,y,z) + [mm]\frac{\partial u}{\partial z}[/mm] (x,y,z) = u
> (x,y,z)
>  
> u(x,y,0)=xy
>  Hallo.
>  
> Die Aufgabe ist, alle Lösungen u der obigen DGL explizit
> anzugeben.
>  
> Ich habe den theoretischen Hintergrund dazu noch nicht so
> ganz verstanden...
>  Es ist ja so, dass man die DGL in folgender Form schreiben
> kann:
>  
> (x,y,1) [mm]\nabla[/mm] u(x,y,z) = u(x,y,z)
>  
> wobei man (x,y,1) als Funktion a(x,y,z)=(x,y,1) auffassen
> kann. Jetzt ist es irgendwie so, dass irgendwelche Kurven
> dieses a als Geschwindigkeitsfeld haben (wobei ich auch
> nicht wirklich weiß, was hier ein Geschwindigkeitsfeld
> ist).


Unter einem Geschwindigkeitsfeld versteht man ein Feld,
das jedem Ort im Raum eine Geschwindigkeit zuordnet.


>  
> Diese Kurven lösen nun angeblich die DGL
> a(x,y,z)=(x,y,z)'=(x,y,1).
>  Das kann ich lösen. Die Lösung wäre dann:
>  [mm]x(t)=c_1[/mm] exp(x(t))
>  [mm]y(t)=c_2[/mm] exp(y(t))


Das muss doch hier so lauten:

[mm]x\left(t\right)=c_{1}*exp\left(t\right)[/mm]
[mm]y\left(t\right)=c_{2}*exp\left(t\right)[/mm]


>  [mm]z(t)=t+c_3[/mm]
>  
> Wie gehts jetzt weiter? Irgendwie muss ich jetzt x,y,z
> miteinander verkoppeln und dann muss das konstant sein. Die


Das stimmt, wenn die partielle DGL so lautet:

[mm]x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\blue{0}[/mm]

Hier betrachtest Du aber die DGL:

[mm]x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\blue{u}[/mm]

bzw.

[mm]x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}-\blue{u}=0[/mm]

Hier handelt es sich um eine quasilineare Gleichung.

Dazu betrachtet man das erweiterte Problem

[mm]x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y}+\frac{\partial U}{\partial z}-\blue{u}\frac{\partial U}{\partial u}=0[/mm]

Mehr dazu hier: []Charakteristikenmethode im Beispiel


> Lösungen kann man dann durch eine beliebige Funktion
> angeben, die nur in der Art und Weise der Argumente
> eingeschränkt wird. Wie man sehen kann, sind meine
> Ansätze noch sehr im Dunkeln und verschwommen.
>
> Kann mir jemand meine Lücken erklären und mir
> weiterhelfen, was ich machen muss und wie die
> Zusammenhänge sind?
>  
> Darüber würde ich mich sehr freuen und wäre sehr
> dankbar.
>  lg moerni


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]