www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAbbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Abbildung
Abbildung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung: Formalität
Status: (Frage) beantwortet Status 
Datum: 14:57 Di 07.11.2006
Autor: Planlos

Aufgabe
Es sei f: M [mm] \to [/mm] N eine Abbildung. Zeigen Sie:
Für alle A [mm] \subseteq [/mm] M gilt A [mm] \subseteq f^{-1}(f(A)). [/mm]

Mir ist ja vollkommen klar, was das heisst. Aber wie schreibe ich das mathematisch korrekt auf??

Was ich bisher habe:
1.Da f eine Abblidung ist existiert für alle x [mm] \in [/mm] A ein y [mm] \in [/mm] f(A).
Ordne ich nun jedem y [mm] \in [/mm] f(A) wieder seinen Urbildern zu erreiche ich ja wieder ganz A. Also [mm] f^{-1}(f(A))=A. [/mm]
2.Nun kann es ja aber auch vorkommen, dass in M ein Element enthalten ist, das nicht in A enthalten war, aber für das trotzdem gilt f(x)=y.
Dann wäre A [mm] \subset f^{-1}(f(A)). [/mm]
[mm] \Rightarrow [/mm] mit 1 und 2 : A [mm] \subseteq f^{-1}(f(A)). [/mm]

Wie schreibe ich das formal korrekt??
Danke für eure Mühen


        
Bezug
Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Di 07.11.2006
Autor: M.Rex

Hallo

> Es sei f: M [mm]\to[/mm] N eine Abbildung. Zeigen Sie:
>  Für alle A [mm]\subseteq[/mm] M gilt A [mm]\subseteq f^{-1}(f(A)).[/mm]
>  Mir
> ist ja vollkommen klar, was das heisst. Aber wie schreibe
> ich das mathematisch korrekt auf??
>  
> Was ich bisher habe:
> 1.Da f eine Abblidung ist existiert für alle x [mm]\in[/mm] A ein y
> [mm]\in[/mm] f(A).
>  Ordne ich nun jedem y [mm]\in[/mm] f(A) wieder seinen Urbildern zu
> erreiche ich ja wieder ganz A. Also [mm]f^{-1}(f(A))=A.[/mm]
>  2.Nun kann es ja aber auch vorkommen, dass in M ein
> Element enthalten ist, das nicht in A enthalten war, aber
> für das trotzdem gilt f(x)=y.
> Dann wäre A [mm]\subset f^{-1}(f(A)).[/mm]
>  [mm]\Rightarrow[/mm] mit 1 und 2
> : A [mm]\subseteq f^{-1}(f(A)).[/mm]
>  
> Wie schreibe ich das formal korrekt??
>  Danke für eure Mühen
>  

So, wie du es hier gemacht hast. Viel besser geht es nicht.
Ein guter Beweis ist immer auch ein wenig Text, das macht es nämlich einfacher zu lesen.

Marius

Bezug
                
Bezug
Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Di 07.11.2006
Autor: Planlos

Das hört sich ja gut an. Hoffentlich sieht derjenige der das korrigieren soll auch so.
Danke dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]