www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildung linear, isomorph
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Abbildung linear, isomorph
Abbildung linear, isomorph < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung linear, isomorph: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:01 Mi 09.06.2004
Autor: Chriskoi

Seien X = | x y | und A = | 2 -1 | Matrizen. Untersuche die Abbildung f:
                | z u |              |-2 3  |

Mat(2,2) -> Mat (2,2); X->X*A!

a) f ist linear
b) f ist isomorph
c) Matrix von f (beliebige Basis Mat(2,2)

        
Bezug
Abbildung linear, isomorph: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Mi 09.06.2004
Autor: Marc

Hallo Chriskoi,

> Seien X = | x y | und A = | 2 -1 | Matrizen. Untersuche die
> Abbildung f:
>                  | z u |              |-2 3  |
>  
> Mat(2,2) -> Mat (2,2); X->X*A!
>  
> a) f ist linear
>  b) f ist isomorph
>  c) Matrix von f (beliebige Basis Mat(2,2)

codex#loesungsansaetze

Viele Grüße,
Marc

Bezug
                
Bezug
Abbildung linear, isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 09.06.2004
Autor: mausi

Ich muss auch die Aufgabe lösen
also ich stelle es nochmal besser dar
X = [mm] \begin{pmatrix} x & y \\ z & u \end{pmatrix} [/mm] A = [mm] \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}f:Mat(2,2) \to [/mm] Mat(2,2) X [mm] \to [/mm] X*A
a) f ist linear
wie ist das gemeint soll ich zeigen das f linear ist? oder soll ichs linear machen?

Bezug
                        
Bezug
Abbildung linear, isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 09.06.2004
Autor: Marc

Hallo mausi,

> Ich muss auch die Aufgabe lösen
>  also ich stelle es nochmal besser dar
>  X = [mm] \begin{pmatrix} > x & y \\ > z & u > \end{pmatrix} [/mm] A = [mm] \begin{pmatrix} > 2 & -1 \\ > -2 & 3 > \end{pmatrix}f:Mat(2,2) \to [/mm] Mat(2,2) X [mm] \to [/mm] X*A
> a) f ist linear
>  wie ist das gemeint soll ich zeigen das f linear ist? oder
> soll ichs linear machen?

Das erste (natürlich). (Die Abbildung ist doch fest vorgegeben, du hast keine "Freiheit", sie soweit zu verändern, dass sie linear wird.)

Also wie gehabt die Linearitätsbedinungen überprüfen.

Dabei hilft vielleicht, sich die Abbildung vorzustellen als [mm] $\IR^4\to\IR^4$ [/mm]
(Matrizen können ja auch als Vektoren aufgefaßt werden.)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]