www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Abbildungen
Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Fr 07.09.2007
Autor: pusteblume86

Hallo ihr,

ich habe eigentlich mehrere Fragen,

und zwar bin ich mal so einige Prüfungsfragen der lienaren Algebra durchgegangen und auf Unklarheiten gestoßen;

1.)Wie stelle ich die Darstellungsmatrix zu P(X)= 2x+b auf bzgl. der Standardbasis?

Also mein Vorschlag wäre: Standardbasis müsste hier sein 1;x

und dann, bilde ich mit dieser Abbildung die Basis ab: P(1)= 2+b = (2+b)*1 + 0*x
P(x) = 2x+b = b*1 + 2*x


Also A:= [mm] \pmat{ 2+b & b \\ 0 & 2} [/mm]

will ich also nun etwas abbilden, stelle ich es wieder in Abhängigkeit der Basen dar: möchte ich also das Bild von x=3 kennen, dann ist ja 3= 3*1 + 0*x , also  [mm] \pmat{ 2+b & b \\ 0 & 2}*\vektor{3 \\0}= \vektor{3(2+b) \\0}=\vektor{6+3b \\0} [/mm]
Gut hier ist ein Fehler!!, denn es müsste ja 6+b herauskommen.


2.) kann man bei linear abhängigen Vektoren jeden der Vektoren durch die anderen darstellen?

=>Hier hätte ich spontan ja geantwortet, aber die wollen ein              Gegenbeispiel hören. Ich weiß aber absolut keins., Kann mir jemand helfen?


Liebe Grüß0e Sandra und danke für alles!

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Fr 07.09.2007
Autor: schachuzipus

Hallo Sandra,

die Abbildung in (1) erschließt sich mir nicht.

Vielleicht könntest du mal angeben, von wo nach wo P abbildet!

[mm] $P:\IR^2\to\IR$ [/mm] ?  oder [mm] $P:\IR_{\le 1}[x]\to\IR$ [/mm] ?

Was ist das große X in P(X)? ein [mm] Vektor\vektor{x\\y} [/mm] ?

Und was ist das b?


zu (2) nimm mal die Menge [mm] \{b_1,b_2,b_3\}=\{\vektor{1\\0},\vektor{2\\0},\vektor{0\\1}\} [/mm]

Da kannst du zwar sowohl [mm] b_1 [/mm] als auch [mm] b_2 [/mm] als LK der jeweils anderen darstellen, aber versuch das mal mit [mm] b_3 [/mm] ;-)


zu (3) War das nicht so, dass du aus bei gegebener Basis [mm] $\IB$ [/mm] eines VR $V$

und bei gegebener linear unabhängiger Teilmenge [mm] $S\subset [/mm] V$ stets eine

Teilmenge [mm] $T\subset\IB$ [/mm] wählen kannst, so dass [mm] $\left(\IB\backslash T\right)\cup [/mm] S$

eine Basis von $V$ ist?


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]