www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Abbildungen
Abbildungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 17.01.2011
Autor: moerni

Aufgabe
Sei G [mm] \subset \mathbb{R}^n [/mm] offen und beschränkt, f eine stetige Abbildung f: [mm] \overline{G} \to \mathbb{R}^n, f(\overline{G}) \subset \overline{G}, [/mm] f(x)=x auf [mm] \partial [/mm] G.
Zeige: [mm] f(\overline{G})=\overline{G} [/mm]

Hallo.

Ich sitze bei dieser Aufgabe leider völlig im Dunkeln. Ich habe leider keine Ahnung, wie ich das beweisen kann oder welche Sätze mir dabei helfen könnten. Thematisch ist diese Aufgabe aus dem Bereich Topologie / Differentialtopologie / Funktionentheorie / Differentialgeometrie.

Hat jemand vielleicht einen Ansatz oder eine Idee für mich?

Darüber wäre ich sehr dankbar,
lg moerni

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Fr 21.01.2011
Autor: rainerS

Hallo!

> Sei G [mm]\subset \mathbb{R}^n[/mm] offen und beschränkt, f eine
> stetige Abbildung f: [mm]\overline{G} \to \mathbb{R}^n, f(\overline{G}) \subset \overline{G},[/mm]
> f(x)=x auf [mm]\partial[/mm] G.
> Zeige: [mm]f(\overline{G})=\overline{G}[/mm]
>  Hallo.
>  
> Ich sitze bei dieser Aufgabe leider völlig im Dunkeln. Ich
> habe leider keine Ahnung, wie ich das beweisen kann oder
> welche Sätze mir dabei helfen könnten. Thematisch ist
> diese Aufgabe aus dem Bereich Topologie /
> Differentialtopologie / Funktionentheorie /
> Differentialgeometrie.
>  
> Hat jemand vielleicht einen Ansatz oder eine Idee für
> mich?

Ein paar Ideen:

1. [mm] $\overline{G}$ [/mm] ist kompakt, daher ist [mm] $f(\overline{G})$ [/mm] kompakt.

2. [mm] $f^{-1}(G)$ [/mm] offen und daher eine offene Teilmenge von G.

3. Die Bedingung $f(x)=x$ auf [mm] $\partial [/mm] G$ bedeutet, dass [mm] $f(\partial G)=\partial [/mm] G$ gilt. Also ist

[mm] f(\overline{G}) = f(G\cup \partial G) = f(G)\cup f(\partial G) = f(G)\cup\partial G [/mm] .

Wenn du zeigen kannst, dass $G [mm] \subset [/mm] f(G)$ gilt, so folgt die Behauptung.

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]