www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Abbildungen
Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Fr 21.10.2005
Autor: Phoebe

Nochmal eine alte Prüfungsfrage:

Es seien q [mm] \varepsilon [/mm] N, q [mm] \ge [/mm] 1 und A: [mm] R^{q} \to [/mm] R durch A [mm] (\vektor{x_{1} \\ \vdots \\ x_{q}}) [/mm] := [mm] x_{1}+...+x_{q} [/mm] gegeben.
Zeigen Sie: A ist surjektiv
Berechnen Sie [mm] \dim_{R}(Kern( [/mm] A )).
Geben Sie eine Basis von Kern(A) an (mit Beweis).

Wie zeige ich auch im allgemeinen, dass eine Abbildung injektiv oder surjektiv ist?

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Fr 21.10.2005
Autor: Hanno

Hallo Phoebe.

Welche Frage(n) hast du zu der dir gestellten Aufgabe? Die Surjektivität sollte klar, sein oder? Was sehr wichtig ist,  sowohl für die Aufgabe als auch für die von dir gestellte zusätzliche Frage, ist der Homomorphiesatz. Ist [mm] $f:V\to [/mm] W$ ein Vektorraumhomomorphismus,dann ist der Faktorraum $V/Ker(f)$ zu $Bild(f)$ isomorph. Es folgt $dim(V/Ker(f))=dim(V)-dim(Ker(f))=dim(Bild(f))$, also $dim(V)=dim(Ker(f))+dim(Bild(f))$. Wenn nun in deinem Beispiel die Abbildung surjektiv ist, heißt dies [mm] $dim(Bild(f))=dim(\IR)=1$, [/mm] also $dim(Ker(f))=dim(V)-1=q-1$.
Bei Abbildungen eines endlichdimensionalen Vektorraumes in sich kannst du dir merken, dass Injektivität und Surjektivität äquivalent sind (folgt aus der obigen Dimensionsformel).

Schaffst du die Bestimmung der Basis des Kernes selbst?


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]