www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenAbbildungsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - Abbildungsmatrix
Abbildungsmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Bestimmung einer Abbildungsmat
Status: (Frage) beantwortet Status 
Datum: 18:46 So 20.01.2008
Autor: RobinD

Aufgabe
Eine Senkrechte Pyramide hat eine quadratische Grundfläche ABCD mit der Seitenlänge 10 cm. Die Pyramidenspitze sei S(5/5/10) in einem kartesischen Koordinatensystem der Längeneinheit 1 cm. Die Grundfläche der Pyramide ist eine in der x1-x2-Ebene, die Grundkante AB mit A(0/0/0) auf der positiven x1-Achse.

1.)
Durch [mm] \vec{v} [/mm] = [mm] \vektor{-1 \\ -0,5 \\ -0,4} [/mm] ist die Richtung einer Parallelprojektion in die x2-x3-Ebene gegeben. Bestimmen Sie die Abbildungsmatrix, die zugehörige Abbildungsgleichung sowie die Koordinaten der Bildpunkte aller Pyramidenpunkte. Zeichnen Sie das Bild der Pyramide in der x2-x3-Ebene.

Moin,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
wir wiederholen gerade das Thema Vektoren und Matrizen und haben da ein paar Aufgaben bekommen, u.a. die oben genannte.
Ich bekomme folgende Koordinaten für die Punkte und deren Bildpunkte heraus:

A(0/0/0)      A'(0/0/0)
B(10/0/0)     B'(0/-5/-4)
C(10/10/0)    C'(0/5/-4)
D(0/10/0)     D'(0/10/0)
S(5/5/10)     S'(0/2,5/8)

Das ganze in ein Koordinatensystem einzuzeichnen bekomme ich dann auch noch hin.
Dann bin ich aber leider am Ende mit meinem Latein. Selbst nach langwierigem studieren der Unterlagen aus den letzten Jahren komme ich nicht dahinter, wie ich eine Abbildungsmatrix bestimmen kann.
Mit der Abbildungsgleichung habe ich mich noch nicht befasst. Wenn es hier jedoch einfach darum geht für die auf die x2-x3-Ebene projezierte Ebene eine Gleichung aufzustellen (sei es Normalenform oder Koordinatengleichung), sollte dies kein größeres Problem darstellen. Mein größtes Problem liegt also erst einmal bei der Bestimmung der Abbildungsmatrix.
Würde mich freuen, wenn mir hier jemand helfen kann und ggf. die Lösung mit kurzem Rechenweg angeben.

Gruß Robin

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Mo 21.01.2008
Autor: angela.h.b.

Hallo,

[willkommenmr].

Dein einziges Problem ist die Abbildungsmatrix? Wenn das so ist, ist Dein Problem sehr klein:

wenn Du die Abbildungsmatrix Deiner Projektion bzgl. der Standardbasis haben möchtest,

brauchst Du einfach nur di Bilder der 3 Standardbasisvektoren unter dieser Abbildung zu berechnen, und die Bildvektoren als Spalten in eine Matrix stecken. Fertig!

Gruß v. Angela



Bezug
                
Bezug
Abbildungsmatrix: Standardbasisvektoren
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 21.01.2008
Autor: RobinD

Danke für deine Antwort erst einmal.
Mit dem Begriff "Bild" kann ich leider in dem ganzen Zusammenhang irgendwie nicht so viel anfangen.
Was ist denn das Bild der 3 Standardbasisvektoren? (die Standardbasisvektoren sind doch [mm] \vektor{1 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0} [/mm] und [mm] \vektor{0 \\ 0 \\ 1} [/mm] oder?) Sind die Bilder der Standardbasisvektoren dann die Koeffizienten vor diesen? Und was sind Bildvektoren? Die Ortsvektoren der ursprünglichen Punkte, die Ortsvektoren der projizierten Punkte oder etwas ganz anderes?
Vielleicht könntest du das ganze sogar kurz vorrechnen, damit ich es nachvollziehen kann.

Danke, Gruß Robin

Bezug
                        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 21.01.2008
Autor: angela.h.b.


>  Mit dem Begriff "Bild" kann ich leider in dem ganzen
> Zusammenhang irgendwie nicht so viel anfangen.
>  Was ist denn das Bild der 3 Standardbasisvektoren? (die
> Standardbasisvektoren sind doch [mm]\vektor{1 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0}[/mm]
> und [mm]\vektor{0 \\ 0 \\ 1}[/mm] oder?)

Die Bilder unter Deiner Projektion (deren Matrix suchst Du ja) sind das, was Du erhältst, wenn Du die Abbildung auf deine Standardvektoren anwendest, also diese Vektoren projezierst.

> Und was sind Bildvektoren?

Das Ergebnis der Abbildung. Die Ortsvektoren der projezierten Punkte.

>  Vielleicht könntest du das ganze sogar kurz vorrechnen,
> damit ich es nachvollziehen kann.

Das möchte ich eher nicht, denn ich habe ja gesehen, daß Du projezieren kannst.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]