Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:17 Di 29.03.2011 | Autor: | chesn |
Aufgabe | Die exakte Aufgabenstellung kann ich leider nur versuchen zu rekonstruieren.. hoffe man wird trotzdem daraus schlau. :)
Sei $ [mm] X:=\{ \pmat{1\\0\\0},\pmat{0\\1\\0},\pmat{0\\0\\1} \} [/mm] $ eine Basis des $ [mm] \IR^3 [/mm] $ , weiter sei [mm] \phi [/mm] eine lineare Abbildung.
Eine Abbildungsmatrix sei gegeben durch [mm] A_{\phi,X,X}:=\pmat{1&0&1 \\ 2&1&1 \\ -1&1&-2 }
[/mm]
(a) Berechne eine Basis von [mm] Kern(\phi).
[/mm]
(b) Bestimme eine Basis von [mm] Bild(\phi).
[/mm]
(c) Begründe: Es gibt Basen $ Y $ und $ Z $ mit [mm] A_{\phi,Y,Z}=\pmat{ 1&0&0 \\ 0&1&0 \\ 0&0&0 }. [/mm] |
Wäre nett wenn mal jemand drüber lesen und hier und da mal kommentieren / korrigieren könnte, da bei mir noch leichte Zweifel bestehen.. :)
Hier meine Lösung:
(a) [mm] Kern(\phi)=\{ v \in \IR^3 | \phi(v) = 0 \}, [/mm] also alle Vektoren, die auf 0 abgebildet werden.
Dazu setze ich [mm] A_{\phi,X,X} [/mm] * v = 0 :
[mm] \pmat{1&0&1 \\ 2&1&1 \\ -1&1&-2 } [/mm] * [mm] \pmat{ v_1 \\ v_2 \\ v_3 } [/mm] = 0 [mm] \gdw \pmat{ v_1 + v_3 \\ 2v_1 + v_2 + v_3 \\ -v_1 + v_2 - 2v_3 } [/mm] = [mm] \pmat{0\\0\\0}
[/mm]
Bekomme beim Lösen des Gleichungssystems eine Nullzeile und wähle damit mein $ [mm] v_3 [/mm] = t $ . (Genauen Rechenweg erspare ich euch mal).
[mm] \Rightarrow v_1=-t [/mm] ; [mm] v_2=t [/mm] ; [mm] v_3=t [/mm]
Damit wäre mein [mm] Kern(\phi)=\{ \pmat{-t\\t\\t} | t \in \IR \}.
[/mm]
Eine Basis wäre damit gegeben durch [mm] B_{Kern(\phi)}=\{ \pmat{-1\\1\\1} \}. [/mm] Ist das so richtig? Bzw. kann man das alles so stehen lassen?
Zu (b):
Wenn ich das richtig verstanden habe, sind die Bildvektoren gerade die linear unabhängigen Spalten der Abbildungsmatrix [mm] A_{\phi,X,X}.
[/mm]
Dazu habe ich [mm] A_{\phi,X,X} [/mm] transponiert und Gauss angewendet:
[mm] A^{T}_{\phi,X,X}= \pmat{ 1&1&-2 \\ 0&1&1 \\ 1&2&-1 } \to \pmat{ 1&1&-2 \\ 0&1&1 \\ 0&0&0 }
[/mm]
Also ist [mm] Bild(\phi)=\{ \pmat{1\\1\\-2}, \pmat{0\\1\\1} \} [/mm] und da diese beiden Vektoren linear unabhängig sind, bilden sie gleichzeitig eine Basis von [mm] Bild(\phi). [/mm] So richtig??
Zu (c) komme ich morgen, habe sie erst überflogen.. wenn jemand allerdings einen tipp hat, wie ich da ran gehen kann, wäre ich auch dafür sehr dankbar. :)
Vielen, vielen Dank schonmal!
|
|
|
|
Hallo chesn,
> Die exakte Aufgabenstellung kann ich leider nur versuchen
> zu rekonstruieren.. hoffe man wird trotzdem daraus schlau.
> :)
>
> Sei [mm]X:=\{ \pmat{1\\0\\0},\pmat{0\\1\\0},\pmat{0\\0\\1} \}[/mm]
> eine Basis des [mm]\IR^3[/mm] , weiter sei [mm]\phi[/mm] eine lineare
> Abbildung.
> Eine Abbildungsmatrix sei gegeben durch
> [mm]A_{\phi,X,X}:=\pmat{1&0&1 \\ 2&1&1 \\ -1&1&-2 }[/mm]
>
> (a) Berechne eine Basis von [mm]Kern(\phi).[/mm]
> (b) Bestimme eine Basis von [mm]Bild(\phi).[/mm]
> (c) Begründe: Es gibt Basen [mm]Y[/mm] und [mm]Z[/mm] mit
> [mm]A_{\phi,Y,Z}=\pmat{ 1&0&0 \\ 0&1&0 \\ 0&0&0 }.[/mm]
> Wäre nett
> wenn mal jemand drüber lesen und hier und da mal
> kommentieren / korrigieren könnte, da bei mir noch leichte
> Zweifel bestehen.. :)
>
> Hier meine Lösung:
>
> (a) [mm]Kern(\phi)=\{ v \in \IR^3 | \phi(v) = 0 \},[/mm] also alle
> Vektoren, die auf 0 abgebildet werden.
>
> Dazu setze ich [mm]A_{\phi,X,X}[/mm] * v = 0 :
>
> [mm]\pmat{1&0&1 \\ 2&1&1 \\ -1&1&-2 }[/mm] * [mm]\pmat{ v_1 \\ v_2 \\ v_3 }[/mm]
> = 0 [mm]\gdw \pmat{ v_1 + v_3 \\ 2v_1 + v_2 + v_3 \\ -v_1 + v_2 - 2v_3 }[/mm]
> = [mm]\pmat{0\\0\\0}[/mm]
>
> Bekomme beim Lösen des Gleichungssystems eine Nullzeile
> und wähle damit mein [mm]v_3 = t[/mm] . (Genauen Rechenweg erspare
> ich euch mal).
> [mm]\Rightarrow v_1=-t[/mm] ; [mm]v_2=t[/mm] ; [mm]v_3=t[/mm]
>
> Damit wäre mein [mm]Kern(\phi)=\{ \pmat{-t\\t\\t} | t \in \IR \}.[/mm]
>
> Eine Basis wäre damit gegeben durch [mm]B_{Kern(\phi)}=\{ \pmat{-1\\1\\1} \}.[/mm]
> Ist das so richtig? Bzw. kann man das alles so stehen
> lassen?
Ja, das ist richtig.
>
> Zu (b):
>
> Wenn ich das richtig verstanden habe, sind die Bildvektoren
> gerade die linear unabhängigen Spalten der
> Abbildungsmatrix [mm]A_{\phi,X,X}.[/mm]
> Dazu habe ich [mm]A_{\phi,X,X}[/mm] transponiert und Gauss
> angewendet:
>
> [mm]A^{T}_{\phi,X,X}= \pmat{ 1&1&-2 \\ 0&1&1 \\ 1&2&-1 } \to \pmat{ 1&1&-2 \\ 0&1&1 \\ 0&0&0 }[/mm]
>
> Also ist [mm]Bild(\phi)=\{ \pmat{1\\1\\-2}, \pmat{0\\1\\1} \}[/mm]
> und da diese beiden Vektoren linear unabhängig sind,
> bilden sie gleichzeitig eine Basis von [mm]Bild(\phi).[/mm] So
> richtig??
Auch das ist richtig.
>
> Zu (c) komme ich morgen, habe sie erst überflogen.. wenn
> jemand allerdings einen tipp hat, wie ich da ran gehen
> kann, wäre ich auch dafür sehr dankbar. :)
>
> Vielen, vielen Dank schonmal!
>
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:40 Mi 30.03.2011 | Autor: | chesn |
Vielen Dank fürs drüber schauen!
Leider haben sich beim Aufgabenteil (c) noch ein paar Probleme aufgetan..
Es soll begründet werden: [mm] \exists [/mm] Basen $ Y $ und $ Z $ : $ [mm] A_{\phi,Y,Z}=\pmat{ 1&0&0 \\ 0&1&0 \\ 0&0&0 }. [/mm] $
Mein erster Gedanke war mit Basiswechselsatz zu argumentieren.. stehe nur etwas auf dem Schlauch gerade und bekomme nichts hin.
Dachte man könnte vielleicht sagen, dass [mm] A_{\phi,Y,Z} [/mm] = [mm] T_{X,Z}*A_{\phi,X,X}*T_{Y,X} [/mm] , wobei [mm] T_{...} [/mm] die Basiswechselmatrizen sind.
Weiter bekomme ich nichts sinnvolles zustande. Dass [mm] Bild(\phi) [/mm] die Dimension 2 hat könnte noch erklären dass [mm] Rang(A_{\phi,Y,Z})=2. [/mm] Klar ist auch, dass [mm] A_{\phi,X,X} [/mm] durch Matrixmultiplikation diagonalisierbar ist.
Habe aber das starke Gefühl, dass da noch ein paar Zusammenhänge fehlen..
Wäre für jeden Tipp sehr dankbar. :)
Vielen Dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:46 Mi 30.03.2011 | Autor: | fred97 |
> Vielen Dank fürs drüber schauen!
> Leider haben sich beim Aufgabenteil (c) noch ein paar
> Probleme aufgetan..
>
> Es soll begründet werden: [mm]\exists[/mm] Basen [mm]Y[/mm] und [mm]Z[/mm] :
> [mm]A_{\phi,Y,Z}=\pmat{ 1&0&0 \\ 0&1&0 \\ 0&0&0 }.[/mm]
>
> Mein erster Gedanke war mit Basiswechselsatz zu
> argumentieren.. stehe nur etwas auf dem Schlauch gerade und
> bekomme nichts hin.
> Dachte man könnte vielleicht sagen, dass [mm]A_{\phi,Y,Z}[/mm] =
> [mm]T_{X,Z}*A_{\phi,X,X}*T_{Y,X}[/mm] , wobei [mm]T_{...}[/mm] die
> Basiswechselmatrizen sind.
> Weiter bekomme ich nichts sinnvolles zustande. Dass
> [mm]Bild(\phi)[/mm] die Dimension 2 hat könnte noch erklären dass
> [mm]Rang(A_{\phi,Y,Z})=2.[/mm]
> Klar ist auch, dass [mm]A_{\phi,X,X}[/mm] durch Matrixmultiplikation diagonalisierbar ist.
Na also, das reicht doch schon als Begründung
FRED
> Habe aber das starke Gefühl, dass da noch ein paar
> Zusammenhänge fehlen..
>
> Wäre für jeden Tipp sehr dankbar. :)
> Vielen Dank!
|
|
|
|