www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildungsmatrix bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Abbildungsmatrix bestimmen
Abbildungsmatrix bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix bestimmen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 12.12.2011
Autor: Balendilin

Aufgabe
Sei [mm] B_1 =\{(1,0,0);(0,1,0);(0,0,1)\} [/mm] die Standardbasis im [mm] \IR^3 [/mm] und sei [mm] B_2 [/mm] := [mm] \{ (1, 2, 0); (0, 1, 2); (2, 0,-7)\} [/mm] eine andere Basis vom [mm] \IR^3. [/mm]
Weiter sei [mm] f:\IR^3\rightarrow\IR^3, [/mm] (x; y; z) [mm] \mapsto [/mm] (-7x + 4y - 2z; y; 28x - 14y + 8z)  eine lineare Abbildung.

Bestimmen Sie die Abbildungsmatrizen [mm] A_{B_1B_1} [/mm] , [mm] A_{B_2B_1} [/mm] , [mm] A_{B_1B_2} [/mm] und [mm] A_{B_2B_2} [/mm] von
f bezüglich dieser Basen.

Hallo,

ich habe leider große Probleme mit diesen Abbildungsmatrizen. Es geht ja irgendwie darum, dass wir die lineare Abbildung durch eine Matrix beschreiben wollen. Aber was genau ist [mm] A_{B_1B_1} [/mm] , [mm] A_{B_2B_1} [/mm] usw. Was genau machen die?
Und wie bestimme ich die?

Vielen Dank schonmal :-)

        
Bezug
Abbildungsmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mo 12.12.2011
Autor: MathePower

Hallo Balendilin,

> Sei [mm]B_1 =\{(1,0,0);(0,1,0);(0,0,1)\}[/mm] die Standardbasis im
> [mm]\IR^3[/mm] und sei [mm]B_2[/mm] := [mm]\{ (1, 2, 0); (0, 1, 2); (2, 0,-7)\}[/mm]
> eine andere Basis vom [mm]\IR^3.[/mm]
> Weiter sei [mm]f:\IR^3\rightarrow\IR^3,[/mm] (x; y; z) [mm]\mapsto[/mm] (-7x
> + 4y - 2z; y; 28x - 14y + 8z)  eine lineare Abbildung.
>  
> Bestimmen Sie die Abbildungsmatrizen [mm]A_{B_1B_1}[/mm] ,
> [mm]A_{B_2B_1}[/mm] , [mm]A_{B_1B_2}[/mm] und [mm]A_{B_2B_2}[/mm] von
>  f bezüglich dieser Basen.
>  Hallo,
>  
> ich habe leider große Probleme mit diesen
> Abbildungsmatrizen. Es geht ja irgendwie darum, dass wir
> die lineare Abbildung durch eine Matrix beschreiben wollen.
> Aber was genau ist [mm]A_{B_1B_1}[/mm] , [mm]A_{B_2B_1}[/mm] usw. Was genau
> machen die?
>  Und wie bestimme ich die?
>  


Die Abbildungsmatrizen bilden die Basislemente der Basis [mm]B_{i}[/mm] ab
und stellen sie als Linearkombination der Vektoren aus der Basis [mm]B_{j}[/mm] dar.


> Vielen Dank schonmal :-)


Gruss
MathePower

Bezug
                
Bezug
Abbildungsmatrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mo 12.12.2011
Autor: Balendilin


> Hallo Balendilin,
>  
> > Sei [mm]B_1 =\{(1,0,0);(0,1,0);(0,0,1)\}[/mm] die Standardbasis im
> > [mm]\IR^3[/mm] und sei [mm]B_2[/mm] := [mm]\{ (1, 2, 0); (0, 1, 2); (2, 0,-7)\}[/mm]
> > eine andere Basis vom [mm]\IR^3.[/mm]
> > Weiter sei [mm]f:\IR^3\rightarrow\IR^3,[/mm] (x; y; z) [mm]\mapsto[/mm] (-7x
> > + 4y - 2z; y; 28x - 14y + 8z)  eine lineare Abbildung.
>  >  
> > Bestimmen Sie die Abbildungsmatrizen [mm]A_{B_1B_1}[/mm] ,
> > [mm]A_{B_2B_1}[/mm] , [mm]A_{B_1B_2}[/mm] und [mm]A_{B_2B_2}[/mm] von
>  >  f bezüglich dieser Basen.
>  >  Hallo,
>  >  
> > ich habe leider große Probleme mit diesen
> > Abbildungsmatrizen. Es geht ja irgendwie darum, dass wir
> > die lineare Abbildung durch eine Matrix beschreiben wollen.
> > Aber was genau ist [mm]A_{B_1B_1}[/mm] , [mm]A_{B_2B_1}[/mm] usw. Was genau
> > machen die?
>  >  Und wie bestimme ich die?
>  >  
>
>
> Die Abbildungsmatrizen bilden die Basislemente der Basis
> [mm]B_{i}[/mm] ab
>  und stellen sie als Linearkombination der Vektoren aus der
> Basis [mm]B_{j}[/mm] dar.
>  

Aha. Und wie berechne ich mit diesem Wissen die Abbildungsmatrix?




>
> > Vielen Dank schonmal :-)
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Abbildungsmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 12.12.2011
Autor: leduart

Hallo
die spalten der abbildungsmatrix sind die bilder der Basisvektoren! und die bilder wirst du doch wohl finden!
Gruss leduart

Bezug
                                
Bezug
Abbildungsmatrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 Mo 12.12.2011
Autor: Balendilin


> Hallo
>  die spalten der abbildungsmatrix sind die bilder der
> Basisvektoren! und die bilder wirst du doch wohl finden!
>  Gruss leduart


Das habe ich versucht und ich bekomme, wenn ich die Basisvektoren aus [mm] B_2 [/mm] einsetze:

[mm] (1;2;0)\mapsto [/mm] (1;2;0)
[mm] (0;1;2)\mapsto(0;1;2) [/mm]
[mm] (2;0;-7)\mapsto(0;0;0) [/mm]

Wenn ich diese Bilder als Spalten in die Matrix schreibe bekomme ich:

[mm] \pmat{ 1 & 0 & 0\\ 2 & 1 & 0 \\ 0 & 2 & 0 } [/mm]


Wenn ich das nun aber ausprobiere und (1;2;0) von rechts an die Matrix multipliziere kommt raus: (1;4;4). Und jetzt? Das ist ja irgendwie nicht die Linearkombination der [mm] B_1-Basisvektoren, [/mm] die (1;2;0) darstellen soll (das wäre ja [mm] 1\cdot(1;0;0)+2\cdot(0;1;0)+0\cdot(0;0;1) [/mm] ).

Hab ich irgendwas falsch gemacht?

Bezug
                                        
Bezug
Abbildungsmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Mo 12.12.2011
Autor: angela.h.b.


> Das habe ich versucht und ich bekomme, wenn ich die
> Basisvektoren aus [mm]B_2[/mm] einsetze:
>  
> [mm](1;2;0)\mapsto[/mm] (1;2;0)
>  [mm](0;1;2)\mapsto(0;1;2)[/mm]
>  [mm](2;0;-7)\mapsto(0;0;0)[/mm]
>  
> Wenn ich diese Bilder als Spalten in die Matrix schreibe
> bekomme ich:
>  
> [mm]\pmat{ 1 & 0 & 0\\ 2 & 1 & 0 \\ 0 & 2 & 0 }[/mm]

Hallo,

die Matrix, die Du aufgestellt hast, ist die Matrix, die die Abbildung f bzgl. der Basis [mm] B_2 [/mm] im Urbildraum und der Standardbasis [mm] B_1 [/mm] im Bildraum darstellt.
Ich weiß nicht genau, ob das in Eurer Notation [mm] A_{B_1B_2} [/mm] oder [mm] A_{B_2B_1} [/mm] ist. Das findest Du aber durch einen Blick in Euer Skript heraus. - und Du solltest es unbedingt herausfinden.

Was tut diese Matrix?
Wenn man sie mit Vektoren, die in Koordinaten bzgl. [mm] B_2 [/mm] gegeben sind, füttert, liefert sie das Bild dieser Vektoren in Standardkoordinaten.


> Wenn ich das nun aber ausprobiere und (1;2;0) von rechts an
> die Matrix multipliziere kommt raus: (1;4;4). Und jetzt?

Jetzt weißt Du, daß f(1*(1, 2, 0)+2*(0, 1, 2)+0*(2, 0,-7))=(1,4,4).

Wenn Du das Bild von [mm] \vektor{1\\2\\0} [/mm] mithilfe Deiner Matrix ausrechnen willst, mußt Du [mm] \vektor{1\\2\\0} [/mm] erst in Koordinaten bzgl [mm] B_2 [/mm] schreiben.
Es ist [mm] \vektor{1\\2\\0}=\vektor{1\\0\\0}_{B_2}, [/mm]

und [mm] $\pmat{ 1 & 0 & 0\\ 2 & 1 & 0 \\ 0 & 2 & 0 }$*\vektor{1\\0\\0}=\vektor{1\\2\\0}. [/mm]

Alles in Butter also!

Gruß v. Angela



> Das ist ja irgendwie nicht die Linearkombination der
> [mm]B_1-Basisvektoren,[/mm] die (1;2;0) darstellen soll (das wäre
> ja [mm]1\cdot(1;0;0)+2\cdot(0;1;0)+0\cdot(0;0;1)[/mm] ).
>  
> Hab ich irgendwas falsch gemacht?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]