www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikAbgeschlossenheit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - Abgeschlossenheit
Abgeschlossenheit < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit: reguläre Sprache
Status: (Frage) überfällig Status 
Datum: 18:45 Mi 30.05.2012
Autor: bandchef

Aufgabe
Aufgabe:

Die Operation

$min: [mm] \mathbb P\left(\Sigma^{\star}\right) \to \mathbb P\left(\Sigma^{\star}\right)$ [/mm]

sei definiert durch

[mm] $min(L)=\{ w \in L | \forall u,v \in \Sigma^{\star} \text{ mit } w=uv, 1 \leq |u|, |v| \geq 1: u \notin L \}$ [/mm]

min beinhaltet also alle diejenigen Wörter aus L, deren echten Präfixe nicht in L liegen. Sei nun L eine reguläre Sprache, ist dann auch min(L) regulär?

Begründen Sie Ihre Antwort.


Hi Leute!

Ich hab zu dieser Aufgabe einige Fragen:

Hier geht es ja um die Abschlusseigenschaften regulärer Sprachen. Soweit so gut. Welche Operationen, auf reguläre Sprachen angewandt, abgeschlossen sind, weiß ich.

Meine Lösung:

-> L ist regulär (durch Aufgabenstellung vorgegeben)

Nun konstruieren ich mir eine neue Sprache [mm] $L_{min} [/mm] = [mm] \{ z \in L | \forall x,y \in \Sigma^{\star} \text{ mit } z=xy, 1 \leq |x|, |y| \geq 1: y \notin L \}$. [/mm] Jetzt ist aber noch nicht gesagt, dass diese "neue Sprache" auch wirklich regulär ist. Um zu beweisen, dass eine Sprache regulär ist, habe ich gelernt, dass man einen Automaten bauen kann. Und genau da fangen jetzt meine Probleme an. Ich weiß nicht wie ich einen solchen Automaten für diese Sprach [mm] $L_{min}$ [/mm] konstruieren soll.

-> Nehmen wir nun mal an, dass ich einen Automaten für [mm] $L_{min}$ [/mm] konstruiert hätte <-

-> Die Differenz zweier regulärer Sprachen ist regulär. (Lehrsatz aus Hopcroft)

Somit kann ich doch dann schreiben: $min(L) = L - [mm] L_{min}$ [/mm] Ich weiß hier laut Aufgabe, dass L regulär ist und durch die Konstruktion des Automaten von [mm] $L_{min}$ [/mm] weiß ich auch, dass [mm] $L_{min}$ [/mm] regulär ist. Somit subtrahiere ich zwei reguläre Sprachen voneinander wodurch $min(L) auch wieder regulär ist. Durch die Eigenschaft von [mm] $L_{min}$ [/mm] ist sichergestellt, dass $min(L)$ genau diese Teilmenge enthält, die durch die Aufgabe gefordert ist.


Stimmt das soweit?



Edit:
Ich denke mittlerweile, dass die Aufgabe so auch gelöst bzw. überhaupt erst richtig gelöst ist:

-> L ist regulär (aus Aufgabe)
-> [mm] $L_{min} [/mm] = [mm] \{ z \in L | \forall x,y \in \Sigma^{\star} \text{ mit } z=xy, 1 \leq |x|, |y| \geq 1: y \notin L \}$ [/mm] davon aber nun das Komplement, da man einen Automaten konstruieren kann ist die Sprache regulär

min(L) ist regulär, da L und [mm] $L_{min}$ [/mm] regulär ist sowie die Mengendifferenz angewandt auf zwei reguläre Sprachen wieder eine reguläre Sprache ergibt:
$min(L) = L - [mm] \overline{L_{min}}$ [/mm]

        
Bezug
Abgeschlossenheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 01.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]