www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikAbkühlrate berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - Abkühlrate berechnen
Abkühlrate berechnen < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abkühlrate berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Di 30.06.2015
Autor: jim-bob

Aufgabe
Berechnen sie die Abkühlgeschwindigkeit einer Nickel-Legierung in Form einer Kugel.

Schmelztemp. 1603,16K, Abkühlung auf 298,16K
c=-444J/(kg*K) (Wikipedia)
k wurde berechnet mit [mm] 1,78474-10^-7W/(m^2*k) [/mm]

Hallo zusammen,

ich soll die Abkühlgeschwindigkeit einer Nickellegierung berechnen.

Verwendet habe ich hierzu das Newtonische Abkühlgesetz.

T(t)=Tu-c*exp (-kt)

umgestellt nach t

ln ((T(t)-Tu)/(-c*-k))
und bekomme einen Wert von 7,216652503. Nun tue ich mich noch etwas schwer mit der Einheit. müsste es nicht theoretisch sec, min, h sein? und nicht eine Geschwindigkeit in z.B. [mm] m/s^2? [/mm]

Benutze ich die Falsche Formel?

        
Bezug
Abkühlrate berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 30.06.2015
Autor: Event_Horizon

Hallo!

> Berechnen sie die Abkühlgeschwindigkeit einer
> Nickel-Legierung in Form einer Kugel.
>  
> Schmelztemp. 1603,16K, Abkühlung auf 298,16K
>  c=-444J/(kg*K) (Wikipedia)
>   k wurde berechnet mit [mm]1,78474-10^-7W/(m^2*k)[/mm]
>  Hallo zusammen,
>  
> ich soll die Abkühlgeschwindigkeit einer Nickellegierung
> berechnen.
>  
> Verwendet habe ich hierzu das Newtonische Abkühlgesetz.
>  

> T(t)=Tu-c*exp (-kt)

Nunja, hier gibt es schon ein Problem. Das c ist nach deiner Angabe keine Temperatur, und die e-Funktion hat keine Einheit. Du subtrahierst also unterschiedliche Größen, das kann nicht funktionieren.

Und kt müßte ebenfalls Einheitenlos sein, ist es aber mit deinem k nicht.

>  
> umgestellt nach t
>  
> ln ((T(t)-Tu)/(-c*-k))

Diese Umformung würde ich auch gerne mal sehen...

> Benutze ich die Falsche Formel?

Ich glaube, du gehst das ganze zu einfach an. Die Newtonsche Formel für einen Körper mit gegebener Anfangstemperatur [mm] T_A [/mm] und Umgebungstemperatur [mm] T_U [/mm] lautet:

[mm] T(t)=T_U+(T_A-T_U)*\exp(-\kappa [/mm] t)

Das [mm] \kappa [/mm] ist eine Größe mit Einheit 1/s und ist ein Maß für die Abkühlgeschwindigkeit. Diese ist abhängig von Geometrie, Größe, Wärmekapazität  und anderen Eigenschaften. Dafür gibts aber keine vorgefertigte Formel.

Dein k ist ein Wärmeübergangskoeffizient, also der Wärmestrom [mm] \dot{Q} [/mm] pro Fläche und pro Kelvin Tempperaturdifferenz Körper <-> Umgebung

Da der extrem klein ist, gehe ich davon aus, daß du die Temperaturverteilung innerhalb der Kugel als homogen annehmen kannst. Du hast also

* Eine Kugel mit unbekanntem Radius, Volumen und Masse, damit auch Wärmemenge bei aktueller Temperatur.
* Die Kugel hat ne Oberfläche, zusammen mit der aktuellen Temperatur und Außentemperatur gibt dir das den Wärmestrom, der aus der Kugel heraus führt.

Die Formel dazu sieht so aus:

[mm] Q(t)=Q_0-\dot{Q}(t) [/mm]

Setze  nun alles ein, z.B. [mm] Q_0=c*m_\text{Kugel}*T_A [/mm]

Das führt dich zu einer Differenzialgleichung in t, die Lösung ist eine Exponentialfunktion ähnlich der, die du benutzt hast.

Übrigens, die Größe der Kugel wird drin bleiben. Eine große Kugel hat im Verhältnis zu ihrer Oberfläche ein großes Volumen, und wird langsamer abkühlen. Sprich, irgendwie fehlen dir noch weitere Werte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]