www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleiten und Stammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableiten und Stammfunktion
Ableiten und Stammfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten und Stammfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 15.10.2008
Autor: claudi7

Hallo, ich steh gerade auf dem Schlauch:

wie kann ich [mm] f(x)=(3x^2+1)^2 [/mm] ableiten bzw. die Stammfunktion bilden??

Muss ich zum Ableiten die Produktregel anwenden?

[mm] f(x)=(3x^2+1)*(3x^2+1) [/mm]

oder geht das einfacher? Wie bilde ich die Stammfunktion?




        
Bezug
Ableiten und Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Mi 15.10.2008
Autor: M.Rex

Hallo

Zwei Wege zum Ableiten:

Entweder du nimmst die Produktregel:

[mm] f(x)=(3x^{2}+1)^{2} [/mm]
[mm] =\overbrace{(3x^2+1)}^{u}\cdot{}\overbrace{(3x^2+1)}^{v} [/mm]
f'(x)=u'(x)*v(x)+u(x)*v'(x)

Oder du mutiplizierst das Binom aus:
[mm] f(x)=(3x^{2}+1)^{2} [/mm]
[mm] f(x)=9x^{4}+6x^{2}+1 [/mm]

Für die Stammfunktion ist natürlich Fall 2 einfacher, sonst bleibt die Partielle Integration oder Substitution [mm] z=3x^{2} [/mm]

Marius

Bezug
                
Bezug
Ableiten und Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 15.10.2008
Autor: claudi7

....und wie geh ich vor wenn ich 2 als Exponeten habe sondern höher.

Gibt es dafür keine allgemeine Ableitungsregel bzw Integrationsregel?



Bezug
                        
Bezug
Ableiten und Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mi 15.10.2008
Autor: M.Rex

Hallo

Fürs Ableiten gibt es dann die Kettenregel, beim Bilden einer Stammfunktion hilft die Substitition dann oft weiter.

Marius

Bezug
        
Bezug
Ableiten und Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 15.10.2008
Autor: dieda

Hallo,

du kannst auch die Kettenregel darauf anwenden:
f(x) = u(w(x))
f'(x)=u'(w(x)) * w'(x)

Also sprich: Deine äußere Funktion ist die quadratische Funktion:
u(x) = [mm] (..)^2 [/mm]
Deine innere Funktion ist [mm] w(x)=3x^2+1 [/mm]

Zum Ableiten der Gesamtfunktion leitest du erst die äußere (u(x)) ab und lässt die innere Funktion dabei "konstant" /gleich / unangetastet.
also: u'(w(x))= 2 * [mm] (3x^2+1)^1 [/mm]
das multipliziert man nun mit der inneren Ableitung:
w'(x) = [mm] 6*x^1 [/mm]

zusammen ergibt das nun
f'(x) = [mm] 2*(3x^2+1)*6x [/mm] = [mm] 12x*(3x^2+1) [/mm]

Viele Grüße,
dieda

Bezug
                
Bezug
Ableiten und Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Mi 15.10.2008
Autor: claudi7

Super!! Vielen Dank euch beiden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]