www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleiten von...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Ableiten von...
Ableiten von... < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten von...: dieser Klammer
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 09.06.2007
Autor: dayscott

Aufgabe
f(x)= [mm] (x+2)^2 [/mm] ,  f(x)' = ?

bin mir hier unsicher, das geht doch von "ausen nach innen" ,also zuerst das quadrat ableiten und dann , dass was in der klammer steht?  ist mir grad irgendwie in den sinn gekommen, dass ich gar nicht weis wie ich sowas ableiten würde [mm] O_O [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableiten von...: richtig verstanden!
Status: (Antwort) fertig Status 
Datum: 16:31 Sa 09.06.2007
Autor: Loddar

Hallo dayscott,

[willkommenmr] !!


Das hast Du doch verbal schon völlig richtig beschrieben mit der MBKettenregel.

Zunächst leitets du den Ausdruck [mm] $(...)^2$ [/mm] ab, und anschließend, das was in der Klammer steht:

$f'(x) \ = \ [mm] 2*(...)^1*(...)' [/mm] \ = \ 2*(x+2)*(x+2)' \ = \ 2*(x+2)*1 \ = \ 2*(x+2)$


Gruß
Loddar


Bezug
        
Bezug
Ableiten von...: Lösung also: + neue Frage
Status: (Frage) beantwortet Status 
Datum: 17:24 Sa 09.06.2007
Autor: dayscott

f'(x)= [mm] 2(x+2)*(1)^2 [/mm]

so müssts dan stimmen :)

hmm eine weitere frage, jede exponentialfunktion lässt sich ja mit der basis e darstellen.  gibts zum mercken eine eselsbrücke?

den:   a^(bx)= e^(bx*ln(a))

das ist irgendwie schwer zu mercken^^



Bezug
                
Bezug
Ableiten von...: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Sa 09.06.2007
Autor: Kroni


> f'(x)= [mm]2(x+2)*(1)^2[/mm]

Hi.

Ja, das stimmt so. Das [mm] 1^2=1 [/mm] kannst du weglassen, da neutrales Glied der Multiplikation.

>  
> so müssts dan stimmen :)

Richtig.

>  
> hmm eine weitere frage, jede exponentialfunktion lässt sich
> ja mit der basis e darstellen.  gibts zum mercken eine
> eselsbrücke?
>  
> den:   a^(bx)= e^(bx*ln(a))

Mir ist keine sog. Eselsbrücke bekannt.
Das, was du dir merken musst, sind einfach die beiden Sachen:

[mm] x=e^{ln(x)}, [/mm] nämlich, dass sich eine Funktion und eine Umkehrfunktion gegenseitig aufheben.

Dann kannst du also [mm] a^{bx} [/mm] also [mm] e^{ln(a^{bx})} [/mm] schreiben.
Dann wendest du ein Logarithmengesetz an:

[mm] ln(a^{x})=x*ln(a) [/mm] , in deinem Falle steht dort aso anstatt x das bx, also zieht man einfach das bx nach vorne, und du bsit zu Hause.

Diese beiden "Regeln"musst du verinnerlichen, dann ist das sozusagen deine Eselsbrücke.

LG

Kroni

>  
> das ist irgendwie schwer zu merken^^

Nun ja, aber das schaffst du schon, wenn du weist, warum das so geht!


>  
>  

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]