www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleiten von arcsin
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableiten von arcsin
Ableiten von arcsin < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten von arcsin: Ich komm nicht auf die Lösung
Status: (Frage) beantwortet Status 
Datum: 03:19 Sa 30.11.2013
Autor: LadyVal

Aufgabe
Bilden Sie die ersten 3 Ableitungen der Funktion
f(x) = arcsin (x²+1).

Hallo:)
Zu obiger Aufgabe:
In der Musterlösung steht für die 1. Ableitung f'(x) = [mm] \bruch{1}{x} [/mm]
Kann das sein und wenn ja wie?

Ich fange an mit:
[mm] f'(x)=\bruch{2x}{\wurzel{1-(x^{4}+2x^{2}+1)}} [/mm]
= [mm] \bruch{2x}{\wurzel{-x^{4}-2x^{2}}} [/mm]
= [mm] \bruch{2}{\wurzel{-x^{2}-2}} [/mm]

So. Unnu? :(
Da kommt doch nie im Leben [mm] \bruch{1}{x} [/mm] raus, oder?

Danke für Eure Hilfe! :)

        
Bezug
Ableiten von arcsin: anscheinend ziemlicher Quatsch
Status: (Antwort) fertig Status 
Datum: 03:43 Sa 30.11.2013
Autor: Al-Chwarizmi


> Bilden Sie die ersten 3 Ableitungen der Funktion
>  f(x) = arcsin (x²+1).
>  Hallo:)
>  Zu obiger Aufgabe:
>  In der Musterlösung steht für die 1. Ableitung f'(x) =
> [mm]\bruch{1}{x}[/mm]       [haee]
>  Kann das sein und wenn ja wie?
>  
> Ich fange an mit:
>  [mm]f'(x)=\bruch{2x}{\wurzel{1-(x^{4}+2x^{2}+1)}}[/mm]
> = [mm]\bruch{2x}{\wurzel{-x^{4}-2x^{2}}}[/mm]
> = [mm]\bruch{2}{\wurzel{-x^{2}-2}}[/mm]
>
> So. Unnu? :(
>  Da kommt doch nie im Leben [mm]\bruch{1}{x}[/mm] raus, oder?

Einverstanden. Aus welcher Quelle hast du denn
die angebliche "Musterlösung" ??

Zunächst müsste man aber eigentlich fragen, in
welcher Grundmenge sich denn das Ganze abspielen
soll.
Wenn wir uns (nur) in [mm] \IR [/mm] bewegen, hat der Term
[mm] x^2+1 [/mm] nur Werte im Intervall [mm] [1....\infty) [/mm] ,
und f(x) könnte dann nur für x=0 überhaupt
definiert sein. Und in diesem Fall wäre ja f'(x)
erstens gar nirgends definiert und f'(x)=1/x=1/0
überdies nur Quatsch ...

Überprüfe also bitte die Aufgabenstellung und die
"Musterlösung" !

LG ,   Al-Chw.

Bezug
                
Bezug
Ableiten von arcsin: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Sa 30.11.2013
Autor: LadyVal

Die Quelle ist ein Aufgabenblatt mitsamt Lösungen eines Uni-Dozenten, der Mathe auf Schulstoff-Niveau wiederholen wollte.
Vielen Dank jedenfalls für Deine schnelle Antwort, denn ich zweifelte am Ende an meinem Verstand:)

Bezug
                        
Bezug
Ableiten von arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Sa 30.11.2013
Autor: Al-Chwarizmi


> Die Quelle ist ein Aufgabenblatt mitsamt Lösungen eines
> Uni-Dozenten, der Mathe auf Schulstoff-Niveau wiederholen
> wollte.
>  Vielen Dank jedenfalls für Deine schnelle Antwort, denn
> ich zweifelte am Ende an meinem Verstand:)     [haee]

Ach nein, das wäre doch etwas voreilig gewesen ...   ;-)

Ich denke noch an die Möglichkeit, dass da schlicht
irgendeine Verwechslung dahinter steckte. Auch Dozenten
sind nicht garantiert immer 100%ig bei der Sache, wenn
sie Übungsblätter mit Lösungen zusammenstellen.

LG ,   Al-Chw.  




Bezug
        
Bezug
Ableiten von arcsin: Antwort
Status: (Antwort) fertig Status 
Datum: 03:53 Sa 30.11.2013
Autor: Marcel

Hi,

> Bilden Sie die ersten 3 Ableitungen der Funktion
>  f(x) = arcsin (x²+1).
>  Hallo:)
>  Zu obiger Aufgabe:
>  In der Musterlösung steht für die 1. Ableitung f'(x) =
> [mm]\bruch{1}{x}[/mm]

dann sag' dem Musterlöser, dass er sich doch bitte mal an

    [mm] $\int \frac{1}{x}dx=\ln(|x|)$ [/mm]

erinnern soll.

(Siehe auch

    http://www.wolframalpha.com/input/?i=int+1%2Fxdx,

aber das sollte man so nur für $x > [mm] 0\,$ [/mm] schreiben...)

Das kann man sich relativ schnell herleiten: Dir reichts im Prinzip dafür,
dass Du $0 < x [mm] \mapsto \ln(x)\,$ [/mm] ableiten kannst. Das kann man sich so erklären:

    [mm] $e^{\ln(x)}=x$ [/mm]

   [mm] $\Rightarrow$ $\frac{d}{dx}(e^{\ln(x)})=\frac{d}{dx}x$ [/mm]

   [mm] $\Rightarrow$ $\underbrace{e^{\ln(x)}}_{=x}*\frac{d}{dx}\ln(x)=1$ [/mm] wegen Kettenregel

   [mm] $\Rightarrow$ $\frac{d}{dx}\ln(x)=1/x\,,$ [/mm] also

    [mm] $\ln\,'(x)=1/x\,.$ [/mm]

Dass dann [mm] $\ln'(|x|)=1/x$ [/mm] ist, folgt aus Symmetriegründen...

Gruß,
  Marcel

Bezug
                
Bezug
Ableiten von arcsin: Thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Sa 30.11.2013
Autor: LadyVal

Danke auch Dir! Und danke auch für die ausführliche Zusatzinfo! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]