www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Ableitung
Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: einfache frage
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 11.01.2005
Autor: Ilcoron

hallo
ich habe ein problem und zwar bekomme ich ohne taschenrechner bei dieser ableitung  ein anderes ergebnis als mit taschenrechner
die funktion lautet:
[mm] $f(x)=\bruch{2}{(x+ x^{2})^{3}}$ [/mm]
also kann mir bitte jemand schritt für schritt vorrechnen wie ich auf die ableitung komme
danke schon mal

        
Bezug
Ableitung: Ansätze
Status: (Antwort) fertig Status 
Datum: 19:39 Di 11.01.2005
Autor: Loddar

Hallo Ilcoron!


> ich habe ein problem und zwar bekomme ich ohne
> taschenrechner bei dieser ableitung  ein anderes ergebnis
> als mit taschenrechner

[verwirrt]
Das verstehe ich jetzt nicht wirklich. Die Ermittlung der Ableitungsfunktion  sollte doch wohl ohne TR ablaufen, oder ...
Egal!!


Aber ... warum verrätst Du uns Dein Ergebnis nicht?
Das läßt sich auch leichter und schneller korrigieren. Außerdem siehst Du, ob und wo Du evtl. Fehler machst ...


>  die funktion lautet:
>  [mm]f(x)=\bruch{2}{(x+ x^{2})^{3}}[/mm]

Schritt für Schritt vorrechnen werd ich das hier nicht, aber einige Hinweise bekommst Du ... ;-)

Du kannst diese Funktion mit der MBQuotientenregel ableiten. Jedoch würde ich erst folgende Umformung bzw. andere Schreibweise wählen:

[mm]f(x) = \bruch{2}{(x+ x^{2})^{3}} = 2 * (x + x^2)^{-3}[/mm]

Das kannst Du nun mit der MBPotenzregel ableiten, mußt jedoch auch die MBKettenregel anwenden ...


Versuch' das mal und poste hier Deine Ergebnisse ...

Loddar


Bezug
        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Di 11.01.2005
Autor: Ilcoron

ich hab nicht die produktregel als erstes sondern die quotientenregel benuzt, und dabei die kettenregel:

[mm] \bruch{NAZ-ZAN}{N^{2}} [/mm]
Nenner(N): $(x+ [mm] x^{2})$ [/mm]
Ableitung Nenner(AN): $3*(x+ [mm] x^{2})^{2}*(1+2x)$ [/mm] nach kettenregel
Zähler(Z): 2
Ableitung Zähler(AZ): 0

=> $f'(x)= [mm] \bruch{-2*3*(x+ x^{2})^{2}*(1+2x)}{(x+ x^{2})^{6}}$ [/mm]

da ist jetzt irgendwo ein fehler oder?

Bezug
                
Bezug
Ableitung: Nur noch kürzen ...
Status: (Antwort) fertig Status 
Datum: 20:33 Di 11.01.2005
Autor: Loddar

Hallo Ilcoron!


> ich hab nicht die produktregel als erstes sondern die
> quotientenregel benuzt, und dabei die kettenregel:

Auch ok [ok] !!


> => [mm]f'(x)= \bruch{-2*3*(x+ x^{2})^{2}*(1+2x)}{(x+ x^{2})^{6}}[/mm]

[daumenhoch] Alles richtig!
Aber wenn Du Dir den Bruch ansiehst, erkennst Du bestimmt, daß man hier noch etwas kürzen kann ...

Dann erhältst Du exakt die Ableitungsfunktion, die durch die Potenzregel auch entsteht.


Loddar


Bezug
                        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 11.01.2005
Autor: Ilcoron


> > => [mm]f'(x)= \bruch{-2*3*(x+ x^{2})^{2}*(1+2x)}{(x+ x^{2})^{6}}[/mm]

hi
wenn man gekürtzt hat kommt dann raus:
[mm] $\bruch{-6*(1+2x)}{ x^{4}* (x+1)^{4}}$ [/mm]
stimmt das?
danke an alle für eure mühen

Bezug
                                
Bezug
Ableitung: Jawollo!!
Status: (Antwort) fertig Status 
Datum: 20:48 Di 11.01.2005
Autor: Loddar


>  wenn man gekürtzt hat kommt dann raus:
>  [mm]\bruch{-6*(1+2x)}{ x^{4}* (x+1)^{4}}[/mm]

[daumenhoch]



Bezug
        
Bezug
Ableitung: angepasst
Status: (Antwort) fertig Status 
Datum: 20:29 Di 11.01.2005
Autor: dominik

Nun hier die Ableitung der Funktion
[mm] f(x)= \bruch{2}{(x+x^2)^3} [/mm]

Also, Schritt für Schritt:
Es gibt zwei Möglichkeiten:
1. Du leitest den Term, wie er hier steht, mit der Quotientenregel ab:
[mm] f(x)= \bruch{2}{(x+x^2)^3}= \bruch{u}{v} [/mm]
[mm] f'(x)=\bruch{u'*v-u*v'}{v^2} [/mm]
[mm] u'=0 [/mm]
[mm] v'=3*(x+x^2)^2*(1+2x) [/mm]
(Kettenregel; [mm] 1+2x [/mm] ist die innere Ableitung und wird einfach als Faktor dazu gefügt)
[mm] \Rightarrow f'(x)=\bruch{0*(x+x^2)^3-2*3*(x+x^2)^2*(1+2x)}{[(x+x^2)^3]^2}=\bruch{-6*(x+x^2)^2*(1+2x)}{(x+x^2)^6}=\bruch{-6*(1+2x)}{(x+x^2)^4} [/mm]
Hier konnte man mit [mm] (x+x^2)^2 [/mm] kürzen.
Der Term im Nenner [mm] (x+x^2)^4 [/mm]  kann noch folgendermassen in Faktoren zerlegt werden:
[mm] (x+x^2)^4=[x*(1+x)]^4=x^4*(1+x)^4 [/mm]
Also lautet das Schlussergebnis wie folgt:
[mm] f'(x)=-6*\bruch{1+2x}{x^4*(1+x)^4} [/mm]

2. Die zweite Möglichkeit ist einfacher und wurde von Loddar angesetzt: Ableiten mit der Produktregel, nachdem der Term vom Quotienten in ein Produkt umgewandelt worden ist:
[mm] f(x)= \bruch{2}{(x+x^2)^3}=2*(x+x^2)^{-3} [/mm]
Hier wird direkt die Kettenregel angewendet, 2 bleibt als Faktor:
1. Schritt: [mm] f'(x) : 2*(-3)*( ... )^{-4} [/mm] Potenzregel
2. Schritt: [mm] f'(x) : 2*(-3)*( x+x^2)^{-4} [/mm] Die Klammer "füllen"
3. Schritt: [mm] f'(x) : 2*(-3)*( x+x^2)^{-4}*(1+2x) [/mm] innere Ableitung als Faktor
[mm] \Rightarrow f'(x)=2*(-3)*( x+x^2)^{-4}*(1+2x)=-6* \bruch{1+2x}{( x+x^2)^4} [/mm]

Die Produktregel ist also tatsächlich einfacher und kürzer!

Nochmals viele Grüsse
dominik

Bezug
                
Bezug
Ableitung: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Di 11.01.2005
Autor: Duke

Hi

die Hochzahl im Nenner ist 3 und nicht 4!

In Zukunft lieber ein bisschen sorgfältiger abschreiben, sonst kommen die Newbies nicht weiter und das wollen wir doch nicht, oder???????

Gruß Duke

^^Es gibt halt nur wenige die es wirklich können!^^ (Duke)

Bezug
                        
Bezug
Ableitung: gute Anregung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 11.01.2005
Autor: dominik

Habe tatsächlich [mm] f(x)= \bruch{2}{(x+x^2)^4} [/mm] abgeleitet statt [mm] f(x)= \bruch{2}{(x+x^2)^3} [/mm] !
Sagen wir: Ilcoron kann dies als zusätzliche Übung betrachten?

Danke auf jeden Fall für die Anregung!
dominik

Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 11.01.2005
Autor: Duke

Also dann wollen wir mal:

die Funktion ist: $ [mm] f(x)=\bruch{2}{(x+ x^{2})^{3}} [/mm] $

Das ist eine Kombination aus Quotienten- und Kettenregel!
(Quotientenregel: Zähler und Nenner)
(der Nenner muss dann aber nach Kettenregel abgeleitet werden)

also: $ [mm] f(x)=\bruch{-2*3(x+x^{2})^{2}*(1+2x)}{((x+x^{2})^{3})^{2}} [/mm]

Probier jetzt mal selber das zu vereinfachen!
Wenn du nicht weiterkommst, oder Fragen hast, wie ich darauf komme, melde dich einfach!

Gruß Duke

P.S.: Ich schreib das hier als Mitteilung, weil ich den Button Antwort nicht hatte!

Bezug
                
Bezug
Ableitung: f'(x) statt f(x)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Di 11.01.2005
Autor: dominik


> [mm]f(x)=\bruch{-2*3(x+x^{2})^{2}*(1+2x)}{((x+x^{2})^{3})^{2}} [/mm]

natürlich muss es heissen: [mm] f'(x) [/mm] statt [mm] f(x) [/mm]  

Wie heisst es doch so schön (Zitat):
" ^^Es gibt halt nur wenige die es wirklich können!^^"

Gruss!
dominik


Bezug
                        
Bezug
Ableitung: Danke schön!!!!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mi 12.01.2005
Autor: Duke

Vielen Dank für deine Berichtigung.

Ich denke damit sind wir quitt, oder?

Gruß Duke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]