www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 10.04.2008
Autor: ebarni

Aufgabe
Bilde die erste, zweite und dritte Ableitung von

[mm]f(x) = x*e^{2x}*(A*cos(x)+B*sin(x))[/mm] [mm]A,B \in \IR[/mm]

Hallo zusammen, ich habe einige Schwierigkeiten, die richtige Regel zu finden.

Die Produktregel kann ich doch hier nicht nehmen, oder? Ich habe doch ein Produkt vor der Klammer und dann auch noch x in der Klammer.

Ausmultiplizieren? Aber dann habe ich

[mm]f(x) = x*e^{2x}*(A*cos(x)+B*sin(x))[/mm]

[mm]f(x) = x*e^{2x}*A*cos(x)+ x*e^{2x} * B*sin(x))[/mm]

also ein dreifaches Produkt.

Wäre dankbar für einen kleinen Tipp, Andreas


        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Do 10.04.2008
Autor: Tyskie84

Hallo!

Du kannst schon die Produktregel verwenden:

Dazu nimm:

[mm] u(x)=x\cdot e^{2x} [/mm] und [mm] v(x)=A\cdot\\cos(x)+B\cdot\\sin(x)) [/mm]

Oder du klammerst aus so wie du es richtig gemacht hast aber es ist nicht zwingend nötig.

[hut] Gruß

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Do 10.04.2008
Autor: ebarni

Hallo Tyskie, vielen Dank für die Antwort!

Aber wieso kann man das Produkt hier so zusammenfassen mit $ [mm] u(x)=x\cdot e^{2x} [/mm] $ und $ [mm] v(x)=A\cdot\\cos(x)+B\cdot\\sin(x)) [/mm] $ ?

Liebe Grüße, Andreas

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Do 10.04.2008
Autor: Tyskie84

Hallo!

> Hallo Tyskie, vielen Dank für die Antwort!
>  
> Aber wieso kann man das Produkt hier so zusammenfassen mit
> [mm]u(x)=x\cdot e^{2x}[/mm] und [mm]v(x)=A\cdot\\cos(x)+B\cdot\\sin(x))[/mm]
> ?
>  
> Liebe Grüße, Andreas

Dazu folgendes Beispiel:

[mm] f(x)=x\cdot\\e^{x}\cdot(x²+4) [/mm]

Produktregel anwenden ohne ausmultiplizieren:

[mm] u(x)=x^\cdot\\e^{x} [/mm]
[mm] u'(x)=e^{x}+x\cdot\\e^{x} [/mm]
[mm] v(x)=x^{2}+4 [/mm]
[mm] v'(x)=\\2x [/mm]

[mm] f'(x)=(e^{x}+x\cdot\\e^{x})\cdot(x^{2}+4)+2x^{2}\cdot\\e^{x}=x^{2}e^{x}+4e^{x}+x^{3}e^{x}+4xe^{x}+2x^{2}e^{x}=x^{3}e^{x}+3x^{2}e^{x}+4xe^{x}+4e^{x}=e^{x}\cdot(x^{3}+3x^{2}+4x+4) [/mm]

Jetzt mit ausklammern dann erhalten wir:

[mm] f(x)=x\cdot\\e{x}\cdot(x^{2}+4)=x^{3}e^{x}+4xe^{x} [/mm]

[mm] \Rightarrow f'(x)=3x^{2}e^{x}+x^{3}e^{x}+4e^{x}+4xe^{x}=e^{x}\cdot(x^{3}+3x^{2}+4x+4) [/mm]

Also gleich :-)

[hut] Gruß



Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Do 10.04.2008
Autor: ebarni

Liebe Tyskie, alles klar vielen Dank für Dein schönes Beispiel [anbet]

Viele Grüße, Andreas

Bezug
        
Bezug
Ableitung: Produktregel für 3 Faktoren
Status: (Antwort) fertig Status 
Datum: 07:23 Fr 11.04.2008
Autor: Loddar

Hallo Andreas!


Man kann hier auch die MBProduktregel für 3 Faktoren anwenden mit:
[mm] $$\left(f*g*h\right)' [/mm] \ = \ f'*g*h \ + \ f*g'*h \ + \ f*g*h'$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]