www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung : Frage
Status: (Frage) beantwortet Status 
Datum: 09:20 Mi 30.03.2005
Autor: AzraHB

Hallo,

kann leider die folgende Funktion nicht richtig ableiten:


[mm] \bruch{e^{\wurzel{x}}}{2 \cdot{} \wurzel{x}} [/mm] $

(es handelt sich hier bereits um die erste Ableitung.


Habe ein ganz komisches Ergebnis raus, mit dem ich aber nicht weiterrechenen kann. Ich muss nämlich den wendepunkt ausrechnen. Bedanke mich für deine/ihre Bemühung im voraus.



        
Bezug
Ableitung : Quotientenregel
Status: (Antwort) fertig Status 
Datum: 09:30 Mi 30.03.2005
Autor: Loddar

Hallo AzraelHB!

> [mm]f'(x) \ = \ \bruch{e^{\wurzel{x}}}{2 \cdot{} \wurzel{x}}[/mm]
>
> Habe ein ganz komisches Ergebnis raus, mit dem ich aber
> nicht weiterrechenen kann. Ich muss nämlich den wendepunkt
> ausrechnen.

Welches Ergebnis hast Du denn raus?
Bitte teile uns doch dieses Ergebnis (mit einigen Zwischenschritten) mit, damit wir das kontrollieren können.


[aufgemerkt] Auf jeden Fall mußt Du mit der MBQuotientenregel arbeiten:

[mm] $\left(\bruch{g}{f}\right)' [/mm] \ = \ [mm] \bruch{g'*f - g*f'}{f^2}$ [/mm]


Gruß
Loddar


PS: Wurde diese Frage hier nicht schon vor kurzer Zeit gestellt? [kopfkratz3]
Hab's jetzt nur nicht gefunden ...


Bezug
                
Bezug
Ableitung : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Mi 30.03.2005
Autor: AzraHB

also habe wie folgt abgeleitet:

[mm]f'(x) \ = \ \bruch{e^{\wurzel{x}}}{2 \cdot{} \wurzel{x}}[/mm]


[mm] \bruch{e^\wurzel{x}}{2*\wurzel{x}} [/mm] - [mm] e^\wurzel{x} [/mm] * [mm] \bruch{1}{\wurzel{x}} [/mm]

geteilt durch ( 2 * Wurzel aus x) ²


Sorry: konnte mit den Formeln nicht so gut umgehen. Aber ich denke ihr habt jetzt mein Lösungsergebnis.





> Hallo AzraelHB!
>  
> > [mm]f'(x) \ = \ \bruch{e^{\wurzel{x}}}{2 \cdot{} \wurzel{x}}[/mm]
>  
> >
> > Habe ein ganz komisches Ergebnis raus, mit dem ich aber
> > nicht weiterrechenen kann. Ich muss nämlich den wendepunkt
> > ausrechnen.
>  
> Welches Ergebnis hast Du denn raus?
>  Bitte teile uns doch dieses Ergebnis (mit einigen
> Zwischenschritten) mit, damit wir das kontrollieren
> können.
>  
>
> [aufgemerkt] Auf jeden Fall mußt Du mit der
> MBQuotientenregel arbeiten:
>  
> [mm]\left(\bruch{g}{f}\right)' \ = \ \bruch{g'*f - g*f'}{f^2}[/mm]
>  
>
> Gruß
>  Loddar
>  
>
> PS: Wurde diese Frage hier nicht schon vor kurzer Zeit
> gestellt? [kopfkratz3]
>  Hab's jetzt nur nicht gefunden ...
>  


Bezug
                        
Bezug
Ableitung : Artikel gestrichen...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Mi 30.03.2005
Autor: Loddar

... wegen geistiger Umnachtung!!!


Bitte an Antwort von Zwerglein halten.


Loddar





Hallo ...


Das sieht doch schon ganz gut aus. Du mußt nun also noch weiter zusammenfassen.


Im Nenner kannst Du die [mm] $(...)^2$ [/mm] weiter vereinfachen.


Im Zähler solltest du alles auf einen Bruch schreiben und dann weiter zusammenfassen (Hauptnenner: [mm] $2*\wurzel{x}$). [/mm]


Dann solltest Du das genannte Ergebnis erhalten.




> Sorry: konnte mit den Formeln nicht so gut umgehen. Aber
> ich denke ihr habt jetzt mein Lösungsergebnis.

Versuch' Dich ruhig mal, mit dem Formel-Editor vertraut zu machen. wenn D mit dem Mauszeiger auf meine Formel klickst, siehst Du die Schreibweise ...


Gruß
Loddar


Bezug
        
Bezug
Ableitung : weitere Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Mi 30.03.2005
Autor: Zwerglein

Hi, AzraHB,

kann Dein Ergebnis nicht ganz nachvollziehen.
Ich komme auf:
f''(x) = [mm] \bruch{\bruch{1}{2*\wurzel{x}}*e^{\wurzel{x}}*2*\wurzel{x} - \bruch{1}{\wurzel{x}}*e^{\wurzel{x}}}{4x} [/mm]

(Oh Mann, was das für Terme sind! Da braucht man echt mehrere Anläufe!))

f''(x) = [mm] \bruch{(\wurzel{x}-1)*e^{\wurzel{x}}}{4x\wurzel{x}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]