www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:31 Do 21.05.2009
Autor: Bluemchen09

Aufgabe
[mm] d=r_{i}-r [/mm]   mit

[mm] r=\bruch{\wurzel{u_{i}^2+v_{i}^2+w_{i}^2}}{\wurzel{a^2+b^2+c^2}} [/mm] mit

[mm] u_{i}=b(z_{i}-z_{0})-c(y_{i}-y_{0}) [/mm]
[mm] v_{i}=c(x_{i}-x_{0})-a(z_{i}-z_{0}) [/mm]
[mm] w_{i}=a(y_{i}-y_{0})-b(x_{i}-x_{0}) [/mm]

Ich möchte jetzt gerne davon die partiellen Ableitungen nach [mm] x_{0}, y_{0}, [/mm] a, b und r bilden.Rechne schon ne Weile daran rum, aber komme nicht auf die Ergebnisse, die mir vorliegen. Kann mir vielleicht jemand helfen?

[mm] \bruch{\partial r_{i}}{\partial x_{0}}=\bruch{-x_{i}}{r_{i}} [/mm]
[mm] \bruch{\partial r_{i}}{\partial y_{0}}=\bruch{-y_{i}}{r_{i}} [/mm]
[mm] \bruch{\partial r_{i}}{\partial a}=\bruch{-x_{i}*z_{i}}{r_{i}} [/mm]
[mm] \bruch{\partial r_{i}}{\partial b}=\bruch{-y_{i}*z_{i}}{r_{i}} [/mm]

r ist mir logisch.
Was mache ich falsch? Bei [mm] x_{0}, y_{0} [/mm] fehlt mir immer das Minus. Wäre nett wenn sich jemand findet, der auf dem Gebiet fit ist. Danke


        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Do 21.05.2009
Autor: reverend

Hallo Blümchen,

mich würde ja interessieren, wie die Aufgabe dazu aussieht. Irgendwie will mir nicht in den Kopf, warum Du nach Größen ableiten willst, die typische Konstantenbezeichnungen haben. Für Deine Anfrage ist das allerdings nicht wesentlich, die ließe sich auch so beantworten.

Dazu müsste ich mir aber nun erst einmal die umfangreiche Funktionsgleichung für [mm] r_i [/mm] zusammenbasteln und dann partiell ableiten. Darauf habe ich gerade wenig Lust, u.a. weil mir der Anreiz der eigentlichen Aufgabe fehlt.

Außerdem ist gerade diese Schreibarbeit Dein Job. Wenn Du die Gleichung für [mm] r_i [/mm] hier einstellst, samt des Weges, wie Du sie erstellt hast, und dann die Ableitungen, dann findest Du hier garantiert schnell jemanden, der mal ein Auge darauf wirft und wohl auch herausfindet, wo Dein Minuszeichen ins Spiel kommt.

Also: was hast Du denn gerechnet?

Grüße
reverend

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 21.05.2009
Autor: Bluemchen09

Hallo reverend,

> mich würde ja interessieren, wie die Aufgabe dazu aussieht.
> Irgendwie will mir nicht in den Kopf, warum Du nach Größen
> ableiten willst, die typische Konstantenbezeichnungen
> haben. Für Deine Anfrage ist das allerdings nicht
> wesentlich, die ließe sich auch so beantworten.

Ok, also es geht um eine Zylinderausgleichung und dazu muss ich die A-Matrix mit den partiellen Ableitungen besetzen. Würde das als Aufgabenstellung reichen? ;-)


> Dazu müsste ich mir aber nun erst einmal die umfangreiche
> Funktionsgleichung für [mm]r_i[/mm] zusammenbasteln und dann
> partiell ableiten. Darauf habe ich gerade wenig Lust, u.a.
> weil mir der Anreiz der eigentlichen Aufgabe fehlt.

Ja genau, gerade weil sie sehr umfangreich ist, habe ich damit ja auch meine Problemchen.
  

> Außerdem ist gerade diese Schreibarbeit Dein Job. Wenn Du
> die Gleichung für [mm]r_i[/mm] hier einstellst, samt des Weges, wie
> Du sie erstellt hast, und dann die Ableitungen, dann
> findest Du hier garantiert schnell jemanden, der mal ein
> Auge darauf wirft und wohl auch herausfindet, wo Dein
> Minuszeichen ins Spiel kommt.
>  
> Also: was hast Du denn gerechnet?

Ok, dann werde ich mal aufschreiben, was ich so gerechnet habe. Werde mal ganz vorne anfangen bei der Zylindergleichung:

[mm] r=\bruch{|a X (x-x0)|}{|a|} [/mm]

X: Kreuz
a,x,x0: Vektoren

[mm] a=\vektor{a \\ b\\c}; (x-x0)=\vektor{x-x_{0} \\ y-y_{0}\\z-z_{0}} [/mm]

Berechnung:
[mm] \vektor{a \\ b\\c}X\vektor{x_{i}-x_{0} \\ y_{i}-y_{0}\\z_{i}-z_{0}}=\vektor{b(z_{i}-z_{0})-c(y_{i}-y_{0}) \\ c(x_{i}-x_{0})-a(z_{i}-z_{0})\\a(y_{i}-y_{0})-b(x_{i}-x_{0})} [/mm]

[mm] |a|=\wurzel{a^2+b^2+c^2} [/mm]

Zusammenfügen:

[mm] r_{i}=\bruch{\wurzel{(b(z_{i}-z_{0})-c(y_{i}-y_{0}))^2+(c(x_{i}-x_{0})-a(z_{i}-z_{0}))^2+(a(y_{i}-y_{0})-b(x_{i}-x_{0}))^2}}{\wurzel{a^2+b^2+c^2}} [/mm]
(hab in meiner Aufgabenstellung vergessen das i bei r anzufügen...hier ist es jetzt korrekt)

So jetzt kommt der Sonderfall:

[mm] x_{0}=y_{0}=a=b=0 [/mm]

Dies erreicht man mit entsprechenden Näherungswerten. Daraus folgt dann:

[mm] a=\vektor{0 \\ 0\\c} [/mm] und [mm] (x-x_{0})=\vektor{x_{i}-0 \\ y_{i}-0\\z_{i}-z_{0}} [/mm]

Berechnung wie oben:

[mm] =\vektor{0*(z_{i}-z_{0}-c*(y_{i}-0) \\ c*(x_{i}-0)-0*(z_{i}-z_{0})\\0*(y_{i}-0)-0*(x_{i}-0)} [/mm]

[mm] r_{i}=\bruch{\wurzel{(-c*y_{i})^2+(c*x_{i})^2}}{\wurzel{c^2}} [/mm]

[mm] =r_{i}^2=\bruch{c^2(-y_{i}+x_{i}}{c^2} =-y_{i}^2+x_{i} [/mm] (meine Lösung)

Daraus ergibt sich für [mm] d_{i}: [/mm]

[mm] d_{i}=\wurzel{x_{i}^2+y_{i}^2}-r [/mm]  (Lösung in meinen Unterlagen)

Wie komme ich denn jetzt von meiner Lösung (mit Minuszeichen) auf die in meinen Unterlagen??? Oder fehlt dort ein Minus. Hab aber eigentlich drei verschiedene Literaturen, in der jeweils [mm] d_{i}=\wurzel{x_{i}^2+y_{i}^2}-r [/mm] steht.

Wenn ich jetzt nach x oder y ableite, komme ich auf:

[mm] \bruch{\partial r_{i}}{\partial x_{0}}=\bruch{x_{i}}{r_{i}} [/mm]

Eigentl. Lösung aber wie oben, im ersten Beitrag geschrieben. Naja, und jetzt kommt natürlich das große Problem, wie ich nach a und b ableiten muss. Vermutlich nehme ich dazu nicht die verkürzte Formel (da a und b nicht vorhanden), sondern die obrige, aber da würde doch dann nicht so ne kurze Ableitung raus kommen.

Hilft das erst mal weiter? Ansonsten bitte nochmal melden.

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:01 Fr 22.05.2009
Autor: M.Rex

Hallo

>
> [...]  
> [mm]=\vektor{0*(z_{i}-z_{0}-c*(y_{i}-0) \\ c*(x_{i}-0)-0*(z_{i}-z_{0})\\0*(y_{i}-0)-0*(x_{i}-0)}[/mm]
>  
> [mm]r_{i}=\bruch{\wurzel{(-c*y_{i})^2+(c*x_{i})^2}}{\wurzel{c^2}}[/mm]

Du hast hier einen Fehler drin.

[mm] r_{i}=\bruch{\wurzel{(-c*y_{i})^2+(c*x_{i})^2}}{\wurzel{c^2}} [/mm]
[mm] =\wurzel{\bruch{(-c*y_{i})^2+(c*x_{i})^2}{c²}} [/mm]
[mm] =\wurzel{\bruch{c²*(-y_{i})^2+c²*x_{i}^2}{c²}} [/mm]
[mm] =\wurzel{\bruch{c²*y_{i}^2+c²*x_{i}^2}{c²}} [/mm]
[mm] =\wurzel{\bruch{c²(y_{i}^2+x_{i}^2)}{c²}} [/mm]
[mm] =\wurzel{y_{i}^2+x_{i}^2} [/mm]

>  
> [mm]=r_{i}^2=\bruch{c^2(-y_{i}+x_{i}}{c^2} =-y_{i}^2+x_{i}[/mm]
> (meine Lösung)
>  
> Daraus ergibt sich für [mm]d_{i}:[/mm]
>  
> [mm]d_{i}=\wurzel{x_{i}^2+y_{i}^2}-r[/mm]  (Lösung in meinen
> Unterlagen)
>  
> Wie komme ich denn jetzt von meiner Lösung (mit
> Minuszeichen) auf die in meinen Unterlagen??? Oder fehlt
> dort ein Minus. Hab aber eigentlich drei verschiedene
> Literaturen, in der jeweils
> [mm]d_{i}=\wurzel{x_{i}^2+y_{i}^2}-r[/mm] steht.
>
> Wenn ich jetzt nach x oder y ableite, komme ich auf:
>  
> [mm]\bruch{\partial r_{i}}{\partial x_{0}}=\bruch{x_{i}}{r_{i}}[/mm]
>  [...]

Marius


Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:55 Fr 22.05.2009
Autor: Bluemchen09

Hallo Marius
>  
> >


> Du hast hier einen Fehler drin.
>  
> [mm]r_{i}=\bruch{\wurzel{(-c*y_{i})^2+(c*x_{i})^2}}{\wurzel{c^2}}[/mm]
>  [mm]=\wurzel{\bruch{(-c*y_{i})^2+(c*x_{i})^2}{c²}}[/mm]
>  [mm]=\wurzel{\bruch{c²*(-y_{i})^2+c²*x_{i}^2}{c²}}[/mm]
>  [mm]=\wurzel{\bruch{c²*y_{i}^2+c²*x_{i}^2}{c²}}[/mm]
>  [mm]=\wurzel{\bruch{c²(y_{i}^2+x_{i}^2)}{c²}}[/mm]
>  [mm]=\wurzel{y_{i}^2+x_{i}^2}[/mm]
>  

Super danke, war ja ein ziemlich dummer Fehler.
Dennoch wirkt sich das leider nicht auf das fehlende Minuszeichen meiner Ableitung aus...das fehlt weiterhin. Mmmhhh, muss ich nochmal ein bisschen rechnen, vielleicht bekomm ich es ja noch raus.

Vielen Dank, schon mal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]