www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 17.06.2010
Autor: yuppi

fa(x)=  [mm] \bruch{-(a+5x)^2}{x+1}) [/mm]

Ich weiß nicht wie ich diese Funktion differenziere aufgrund dieses Vorzeichenwechsels und morgen noch ne mündliche Prüfung.

Bitte um Hilfe. Mir is klar kettenregel und quotientenregel, aber dieses - macht mich durcheinander.

Wäre echt wenn das mir jmd. zeigen würde, wegen dieses minus
Gruß yuppi

        
Bezug
Ableitung: einzeln
Status: (Antwort) fertig Status 
Datum: 18:55 Do 17.06.2010
Autor: Loddar

Hallo yuppi!


Wenn Du Dir nicht sicher bist, leite Zähler und Nenner zunächst getrennt ab und setze dann in die Formel der MBQuotientenregel ein:

$$u \ = \ [mm] -(a+5x)^2$$ [/mm]
$$v \ = \ x+1$$

Gruß
Loddar


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 17.06.2010
Autor: yuppi

Darf man sofort die Vorzeichen wechseln, auch wenn da ein Hoch ^2 an der Klammer ist ?


Das ist mir klar Loddar. Aber ich weiß nich wie ich mit dien minus umgehen soll.

Gruß

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 17.06.2010
Autor: Steffi21

Hallo, betrachte das Minus vor der Klammer im Zähler als konstanten Faktor -1, dir ist bekannt, was mit konstanten Faktoren beim Ableiten passiert, also [mm] u=(-1)*(a+5x)^{2}, [/mm] Steffi

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 17.06.2010
Autor: yuppi

f´(x) = [mm] \bruch{-(10a+50x)*(x+1)--(a+5x)^2*1}{(x+1)^2} [/mm]

Da folgt 2 Mal hintereinander wie man sieht ein Minus. Was mache ich nun damit, einfach ein Plus draus machen ?

Gruß

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 17.06.2010
Autor: Steffi21

Hallo, im Prinzip hast du es korrekt erkannt, im Zähler steht [mm] -(10a+50x)*(x+1)+(a+5x)^{2} [/mm]
die korrekte Schreibweise bei dir wäre [mm] -(10a+50x)*(x+1)-[-(a+5x)^{2}*1], [/mm] steht vor der eckigen Klammer minus, so tauscht sich das Vorzeichen in der eckigen Klammer, Steffi










Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 17.06.2010
Autor: yuppi

also dann ginge es so weiter : ?

Und dann müsste ich erneut das Vorzeichen wechseln ändern ?

Das ist nur der Zählergrad

[mm] -10ax-10a-50x^2-50-(-a^2+10ax-25x^2) [/mm]

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Do 17.06.2010
Autor: Steffi21

Hallo, du möchtest also die Klammern auflösen

[mm] -(10a+50x)*(x+1)+(a+5x)^{2} [/mm]

[mm] -10ax-10a-50x^{2}-50x+a^{2}+10ax+25x^{2} [/mm]

Steffi


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Do 17.06.2010
Autor: yuppi

Also wäre die eckige Klammer gewissermaßen unnötig, indem ich einfach aus - - plus gemacht hätte.

Aber du hast das echt super erklärt danke.

Ich hab noch eine frage :

Bsp  [mm] -(x-5)^4 [/mm]   dürfte ich das auch in [mm] (-x+5)^4 [/mm] umformen ?

Vielen dank schonmal

Bezug
                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Do 17.06.2010
Autor: Gonozal_IX

Huhu,

nein, das kannst du dir aber auch selbst ganz schnell überlegen wie folgt:

[mm] $-(x-5)^4 [/mm] = [mm] -[(x-5)]^4 [/mm] = [mm] -[(-1)(-x+5)]^4 [/mm] = [mm] -[(-1)^4(-x+5)^4]$ [/mm]

Was fällt dir nun auf? Findest du ne Regel für gerade Exponenten bzw. ungerade Exponenten?

MFG,
Gono.

Bezug
                                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 17.06.2010
Autor: yuppi

Das ist echt kompleziert ^^ Bitte nicht so erklären wie Lehrer es tuhen ^^

kannst du mir das anders zeigen ?

Bezug
                                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Do 17.06.2010
Autor: Steffi21

Hallo

[mm] -(x-5)^{4} [/mm]

betrachten wir zunächst nur [mm] (x-5)^{4}, [/mm] der Exponent 4 bezieht sich ja nur auf (x-5),

aus dem Term (x-5) klammern wir (-1) aus, also (-1)*(-x+5) worauf sich der Exponent 4 bezieht

[mm] [(-1)*(-x+5)]^{4} [/mm]

der Exponent bezieht sich ja auf (-1) und (-x+5), also

[mm] (-1)^{4}*(-x+5)^{4} [/mm]

bedenke, wir haben nur  [mm] (x-5)^{4} [/mm] berachtet, also - davor

[mm] -[(-1)^{4}*(-x+5)]^{4} [/mm]

jetzt überlege mal, was passiert mit den Potenzen von (-1) für gerade- bzw. ungerade Exponenten

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]